Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
Mol Cell. 2011 Dec 9;44(5):734-44. doi: 10.1016/j.molcel.2011.09.022.
Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.
蛋白质-蛋白质相互作用介导了大量的细胞过程。在这里,我们提出了一种由精细调控的结构不稳定性介导的蛋白质-蛋白质相互作用的调控机制,并与分子模拟相结合。我们表明,一组 III 型分泌(TTS)自动抑制的同源二聚体伴侣采用类似无定形状态的构象,这种构象暂时暴露出底物结合位点,使其能够快速与同源蛋白底物结合。同源二聚体界面上的包装缺陷刺激结合,而这些缺陷的纠正则导致更不稳定的伴侣,从而导致非功能的生物系统。蛋白质底物利用结构模拟来弥补伴侣中的弱点,并对抗其自动抑制构象。这种蛋白质活性的调节机制在几个 TSS 系统中是保守的,为我们提供了一个清晰的例子,说明了精细调控的结构不稳定性赋予生物系统的功能优势。