Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Science. 2020 Oct 9;370(6513). doi: 10.1126/science.abc2754. Epub 2020 Oct 1.
Protein kinases intrinsically sample a number of conformational states with distinct catalytic and binding activities. We used nuclear magnetic resonance spectroscopy to describe in atomic-level detail how Abl kinase interconverts between an active and two discrete inactive structures. Extensive differences in key structural elements between the conformational states give rise to multiple intrinsic regulatory mechanisms. The findings explain how oncogenic mutants can counteract inhibitory mechanisms to constitutively activate the kinase. Energetic dissection revealed the contributions of the activation loop, the Asp-Phe-Gly (DFG) motif, the regulatory spine, and the gatekeeper residue to kinase regulation. Characterization of the transient conformation to which the drug imatinib binds enabled the elucidation of drug-resistance mechanisms. Structural insight into inactive states highlights how they can be leveraged for the design of selective inhibitors.
蛋白激酶在固有状态下可探测到多种构象,这些构象具有不同的催化和结合活性。我们使用核磁共振波谱技术,以原子水平的细节描述了 Abl 激酶如何在活性和两种离散的非活性结构之间相互转换。构象状态之间关键结构元素的广泛差异产生了多种内在的调节机制。这些发现解释了致癌突变体如何对抗抑制机制,从而使激酶持续激活。能量分析揭示了激活环、Asp-Phe-Gly (DFG) 基序、调节脊柱和看门残基对激酶调节的贡献。对药物伊马替尼结合的瞬时构象的表征,使阐明耐药机制成为可能。对非活性状态的结构洞察突出了如何利用它们来设计选择性抑制剂。