Joint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA 94608, USA.
Structure. 2011 Dec 7;19(12):1876-84. doi: 10.1016/j.str.2011.09.013.
The sesquiterpene bisabolene was recently identified as a biosynthetic precursor to bisabolane, an advanced biofuel with physicochemical properties similar to those of D2 diesel. High-titer microbial bisabolene production was achieved using Abies grandis α-bisabolene synthase (AgBIS). Here, we report the structure of AgBIS, a three-domain plant sesquiterpene synthase, crystallized in its apo form and bound to five different inhibitors. Structural and biochemical characterization of the AgBIS terpene synthase Class I active site leads us to propose a catalytic mechanism for the cyclization of farnesyl diphosphate into bisabolene via a bisabolyl cation intermediate. Further, we describe the nonfunctional AgBIS Class II active site whose high similarity to bifunctional diterpene synthases makes it an important link in understanding terpene synthase evolution. Practically, the AgBIS crystal structure is important in future protein engineering efforts to increase the microbial production of bisabolene.
倍半萜双醇最近被鉴定为双醇的生物合成前体,双醇是一种先进的生物燃料,其物理化学性质与 D2 柴油相似。使用云杉 α-双醇合酶(AgBIS)可实现高浓度微生物双醇的生产。本文报道了 Abies grandis α-双醇合酶(AgBIS)的结构,AgBIS 是一种三结构域植物倍半萜合酶,以其无配体形式和与五种不同抑制剂结合的形式结晶。对 AgBIS 萜烯合酶 I 类活性位点的结构和生化特性进行了表征,使我们能够提出通过双醇正离子中间物将法呢基二磷酸环化成双醇的催化机制。此外,我们还描述了非功能 AgBIS 类 II 活性位点,其与双功能二萜合酶的高度相似性使其成为理解萜烯合酶进化的重要环节。实际上,AgBIS 晶体结构对于未来提高微生物双醇产量的蛋白质工程努力非常重要。