Suppr超能文献

通过代谢工程化的解脂耶氏酵母从废弃食用油中高效生产双氢青蒿素。

High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica.

机构信息

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457, China.

出版信息

Microb Biotechnol. 2021 Nov;14(6):2497-2513. doi: 10.1111/1751-7915.13768. Epub 2021 Feb 19.

Abstract

The natural plant product bisabolene serves as a precursor for the production of a wide range of industrially relevant chemicals. However, the low abundance of bisabolene in plants renders its isolation from plant sources non-economically viable. Therefore, creation of microbial cell factories for bisabolene production supported by synthetic biology and metabolic engineering strategies presents a more competitive and environmentally sustainable method for industrial production of bisabolene. In this proof-of-principle study, for the first time, we engineered the oleaginous yeast Yarrowia lipolytica to produce α-bisabolene, β-bisabolene and γ-bisabolene through heterologous expression of the α-bisabolene synthase from Abies grandis, the β-bisabolene synthase gene from Zingiber officinale and the γ-bisabolene synthase gene from Helianthus annuus respectively. Subsequently, two metabolic engineering approaches, including overexpression of the endogenous mevalonate pathway genes and introduction of heterologous multidrug efflux transporters, were employed in order to improve bisabolene production. Furthermore, the fermentation conditions were optimized to maximize bisabolene production by the engineered Y. lipolytica strains from glucose. Finally, we explored the potential of the engineered Y. lipolytica strains for bisabolene production from the waste cooking oil. To our knowledge, this is the first report of bisabolene production in Y. lipolytica using metabolic engineering strategies. These findings provide valuable insights into the engineering of Y. lipolytica for a higher-level production of bisabolene and its utilization in converting waste cooking oil into various industrially valuable products.

摘要

天然植物产物二氢月桂烯醇可作为生产多种工业相关化学品的前体。然而,二氢月桂烯醇在植物中的丰度较低,使得从植物源中分离出来不具有经济可行性。因此,利用合成生物学和代谢工程策略,创建微生物细胞工厂来生产二氢月桂烯醇,是一种更具竞争力和环境可持续性的工业生产二氢月桂烯醇的方法。在这项原理验证研究中,我们首次通过异源表达白木香中的α-二氢月桂烯醇合酶、生姜中的β-二氢月桂烯醇合酶基因和向日葵中的γ-二氢月桂烯醇合酶基因,工程化产油酵母解脂耶氏酵母来生产α-二氢月桂烯醇、β-二氢月桂烯醇和γ-二氢月桂烯醇。随后,采用两种代谢工程方法,包括过表达内源性甲羟戊酸途径基因和引入异源多药外排转运蛋白,来提高二氢月桂烯醇的产量。此外,优化发酵条件以最大限度地提高工程化解脂耶氏酵母从葡萄糖生产二氢月桂烯醇的产量。最后,我们探索了工程化解脂耶氏酵母菌株从废食用油中生产二氢月桂烯醇的潜力。据我们所知,这是首次利用代谢工程策略在解脂耶氏酵母中生产二氢月桂烯醇的报道。这些发现为利用代谢工程策略构建解脂耶氏酵母生产二氢月桂烯醇提供了有价值的见解,并为利用废食用油转化为各种有工业价值的产品提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db0b/8601197/abf76d9283bf/MBT2-14-2497-g002.jpg

相似文献

1
High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica.
Microb Biotechnol. 2021 Nov;14(6):2497-2513. doi: 10.1111/1751-7915.13768. Epub 2021 Feb 19.
2
Engineering the oleaginous yeast to produce limonene from waste cooking oil.
Biotechnol Biofuels. 2019 Oct 8;12:241. doi: 10.1186/s13068-019-1580-y. eCollection 2019.
3
Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil.
J Biosci Bioeng. 2020 Jan;129(1):31-40. doi: 10.1016/j.jbiosc.2019.06.009. Epub 2019 Jul 15.
4
Combining Metabolic Engineering and Lipid Droplet Storage Engineering for Improved α-Bisabolene Production in .
J Agric Food Chem. 2023 Aug 2;71(30):11534-11543. doi: 10.1021/acs.jafc.3c02472. Epub 2023 Jul 18.
5
Biosynthesis of α-Pinene by Genetically Engineered from Low-Cost Renewable Feedstocks.
J Agric Food Chem. 2021 Jan 13;69(1):275-285. doi: 10.1021/acs.jafc.0c06504. Epub 2020 Dec 24.
7
Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot.
Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8561-8573. doi: 10.1007/s00253-021-11415-7. Epub 2021 Oct 18.
8
Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox.
Biotechnol Notes. 2022 Dec 24;4:14-19. doi: 10.1016/j.biotno.2022.12.005. eCollection 2023.
9
Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization.
Appl Microbiol Biotechnol. 2019 Apr;103(8):3511-3520. doi: 10.1007/s00253-019-09735-w. Epub 2019 Mar 12.

引用本文的文献

1
Waste Cooking Oils into High-Value Products: Where Is the Industry Going?
Polymers (Basel). 2025 Mar 26;17(7):887. doi: 10.3390/polym17070887.
2
CRISPR-Mediated rDNA Integration and Fluorescence Screening for Pathway Optimization in .
Chem Bio Eng. 2024 Jul 11;1(11):940-951. doi: 10.1021/cbe.4c00104. eCollection 2024 Dec 26.
3
Strategies for the Transformation of Waste Cooking Oils into High-Value Products: A Critical Review.
Polymers (Basel). 2025 Jan 29;17(3):368. doi: 10.3390/polym17030368.
5
Progress in the Metabolic Engineering of for the Synthesis of Terpenes.
Biodes Res. 2024 Nov 12;6:0051. doi: 10.34133/bdr.0051. eCollection 2024.
6
Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox.
Biotechnol Notes. 2022 Dec 24;4:14-19. doi: 10.1016/j.biotno.2022.12.005. eCollection 2023.
7
Engineering Yeast Peroxisomes for α-Bisabolene Production from Sole Methanol with the Aid of Proteomic Analysis.
JACS Au. 2024 Apr 29;4(7):2474-2483. doi: 10.1021/jacsau.4c00106. eCollection 2024 Jul 22.
8
Engineering strategies for enhanced 1', 4'-trans-ABA diol production by Botrytis cinerea.
Microb Cell Fact. 2024 Jun 26;23(1):185. doi: 10.1186/s12934-024-02460-8.
9
Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes.
Microorganisms. 2024 Mar 30;12(4):706. doi: 10.3390/microorganisms12040706.
10
α-Farnesene production from lipid by engineered Yarrowia lipolytica.
Bioresour Bioprocess. 2021 Aug 23;8(1):78. doi: 10.1186/s40643-021-00431-0.

本文引用的文献

1
Improving heterologous protein expression in sp. PCC 6803 for alpha-bisabolene production.
Metab Eng Commun. 2019 Dec 9;10:e00117. doi: 10.1016/j.mec.2019.e00117. eCollection 2020 Jun.
2
Engineering the oleaginous yeast for production of α-farnesene.
Biotechnol Biofuels. 2019 Dec 23;12:296. doi: 10.1186/s13068-019-1636-z. eCollection 2019.
3
Engineering the oleaginous yeast to produce limonene from waste cooking oil.
Biotechnol Biofuels. 2019 Oct 8;12:241. doi: 10.1186/s13068-019-1580-y. eCollection 2019.
4
Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase.
Bioresour Technol. 2019 Nov;291:121812. doi: 10.1016/j.biortech.2019.121812. Epub 2019 Jul 15.
6
Metabolic engineering in the host Yarrowia lipolytica.
Metab Eng. 2018 Nov;50:192-208. doi: 10.1016/j.ymben.2018.07.016. Epub 2018 Jul 26.
7
Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in .
Front Microbiol. 2017 Nov 20;8:2233. doi: 10.3389/fmicb.2017.02233. eCollection 2017.
10
a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts.
Biotechnol Biofuels. 2017 Oct 23;10:241. doi: 10.1186/s13068-017-0927-5. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验