Computing Science, University of Alberta, 2-32 Athabasca Hall, Edmonton, Canada.
Med Image Anal. 2012 Feb;16(2):361-73. doi: 10.1016/j.media.2011.10.001. Epub 2011 Nov 15.
Glioma is one of the most challenging types of brain tumors to treat or control locally. One of the main problems is to determine which areas of the apparently normal brain contain glioma cells, as gliomas are known to infiltrate several centimeters beyond the clinically apparent lesion that is visualized on standard Computed Tomography scans (CT) or Magnetic Resonance Images (MRIs). To ensure that radiation treatment encompasses the whole tumor, including the cancerous cells not revealed by MRI, doctors treat the volume of brain that extends 2cm out from the margin of the visible tumor. This approach does not consider varying tumor-growth dynamics in different brain tissues, thus it may result in killing some healthy cells while leaving cancerous cells alive in the other areas. These cells may cause recurrence of the tumor later in time, which limits the effectiveness of the therapy. Knowing that glioma cells preferentially spread along nerve fibers, we propose the use of a geodesic distance on the Riemannian manifold of brain diffusion tensors to replace the Euclidean distance used in the clinical practice and to correctly identify the tumor invasion margin. This mathematical model results in a first-order Partial Differential Equation (PDE) that can be numerically solved in a stable and consistent way. To compute the geodesic distance, we use actual Diffusion Weighted Imaging (DWI) data from 11 patients with glioma and compare our predicted infiltration distance map with actual grwoth in follow-up MRI scans. Results show improvement in predicting the invasion margin when using the geodesic distance as opposed to the 2cm conventional Euclidean distance.
脑胶质瘤是最难治疗或局部控制的脑瘤类型之一。主要问题之一是确定哪些看似正常的脑区含有胶质瘤细胞,因为众所周知,胶质瘤会在临床上明显的病变(即标准计算机断层扫描 (CT) 或磁共振成像 (MRI) 上可见的病变)之外浸润几厘米。为了确保放射治疗包括整个肿瘤,包括 MRI 未显示的癌细胞,医生会治疗从可见肿瘤边缘向外延伸 2cm 的脑区。这种方法不考虑不同脑组织中肿瘤生长动力学的变化,因此可能会杀死一些健康细胞,而使其他区域的癌细胞存活。这些细胞可能会导致肿瘤在以后复发,从而限制治疗的效果。鉴于胶质瘤细胞优先沿着神经纤维扩散,我们建议使用大脑扩散张量黎曼流形上的测地距离来代替临床实践中使用的欧几里得距离,并正确识别肿瘤侵袭边界。该数学模型产生了一个一阶偏微分方程 (PDE),可以以稳定和一致的方式进行数值求解。为了计算测地距离,我们使用了 11 名脑胶质瘤患者的实际扩散加权成像 (DWI) 数据,并将我们预测的浸润距离图与后续 MRI 扫描中的实际生长进行了比较。结果表明,当使用测地距离而不是 2cm 的传统欧几里得距离时,预测侵袭边界的效果有所提高。