Suppr超能文献

耦合脑肿瘤生物物理模型与微分同胚图像配准

Coupling brain-tumor biophysical models and diffeomorphic image registration.

作者信息

Scheufele Klaudius, Mang Andreas, Gholami Amir, Davatzikos Christos, Biros George, Mehl Miriam

机构信息

University of Stuttgart, IPVS, Universitätstraße 38, 70569 Stuttgart, Germany.

University of Houston, Department of Mathematics, 3551 Cullen Blvd., Houston, TX 77204-3008, USA.

出版信息

Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.

Abstract

We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for joint image registration and biophysical inversion and we apply it to analyze MR images of glioblastomas (primary brain tumors). We have two applications in mind. The first one is normal-to-abnormal image registration in the presence of tumor-induced topology differences. The second one is biophysical inversion based on single-time patient data. The underlying optimization problem is highly non-linear and non-convex and has not been solved before with a gradient-based approach. Given the segmentation of a normal brain MRI and the segmentation of a cancer patient MRI, we determine tumor growth parameters and a registration map so that if we "grow a tumor" (using our tumor model) in the normal brain and then register it to the patient image, then the registration mismatch is as small as possible. This "" two-way couples the biophysical inversion and the registration problem. In the image registration step we solve a large-deformation diffeomorphic registration problem parameterized by an Eulerian velocity field. In the biophysical inversion step we estimate parameters in a reaction-diffusion tumor growth model that is formulated as a partial differential equation (PDE). In SIBIA, we couple these two sub-components in an iterative manner. We first presented the components of SIBIA in , in which we derived parallel distributed memory algorithms and software modules for the registration and biophysical inverse problems. In this paper, our contributions are the introduction of a PDE-constrained optimization formulation of the coupled problem, and the derivation of a Picard iterative solution scheme. We perform extensive tests to experimentally assess the performance of our method on synthetic and clinical datasets. We demonstrate the convergence of the SIBIA optimization solver in different usage scenarios. We demonstrate that using SIBIA, we can accurately solve the coupled problem in three dimensions (256 resolution) in a few minutes using 11 dual-x86 nodes.

摘要

我们提出了SIBIA(基于可扩展集成生物物理学的图像分析),这是一个用于联合图像配准和生物物理反演的框架,并将其应用于分析胶质母细胞瘤(原发性脑肿瘤)的磁共振图像。我们考虑了两个应用。第一个是在存在肿瘤诱导的拓扑差异的情况下进行正常到异常的图像配准。第二个是基于单次患者数据的生物物理反演。潜在的优化问题是高度非线性和非凸的,以前尚未用基于梯度的方法解决。给定正常脑磁共振成像的分割和癌症患者磁共振成像的分割,我们确定肿瘤生长参数和配准图,以便如果我们在正常脑中“生长肿瘤”(使用我们的肿瘤模型),然后将其配准到患者图像,那么配准不匹配尽可能小。这种“双向”将生物物理反演和配准问题耦合在一起。在图像配准步骤中,我们解决了一个由欧拉速度场参数化的大变形微分同胚配准问题。在生物物理反演步骤中,我们在一个反应扩散肿瘤生长模型中估计参数,该模型被表述为一个偏微分方程(PDE)。在SIBIA中,我们以迭代方式将这两个子组件耦合在一起。我们首先在[具体文献]中介绍了SIBIA的组件,在其中我们推导了用于配准和生物物理反演问题的并行分布式内存算法和软件模块。在本文中,我们的贡献是引入了耦合问题的偏微分方程约束优化公式,以及推导了皮卡迭代求解方案。我们进行了广泛的测试,以通过实验评估我们的方法在合成和临床数据集上的性能。我们展示了SIBIA优化求解器在不同使用场景下的收敛性。我们证明,使用SIBIA,我们可以在几分钟内使用1台双x86节点在三维(256分辨率)中准确地解决耦合问题。

相似文献

1
Coupling brain-tumor biophysical models and diffeomorphic image registration.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
2
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
3
WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab649c. Epub 2020 Feb 26.
4
An Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration.
SIAM J Imaging Sci. 2015;8(2):1030-1069. doi: 10.1137/140984002. Epub 2015 May 5.
5
A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(5):B860-B885. doi: 10.1137/17M1114132. Epub 2017 Sep 26.
6
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
7
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.

引用本文的文献

1
Deformation registration based on reconstruction of brain MRI images with pathologies.
Med Biol Eng Comput. 2025 Jul;63(7):2091-2104. doi: 10.1007/s11517-025-03319-9. Epub 2025 Feb 10.
4
Fibre tract segmentation for intraoperative diffusion MRI in neurosurgical patients using tract-specific orientation atlas and tumour deformation modelling.
Int J Comput Assist Radiol Surg. 2022 Sep;17(9):1559-1567. doi: 10.1007/s11548-022-02617-z. Epub 2022 Apr 25.
5
CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures.
J Open Source Softw. 2021;6(61). doi: 10.21105/joss.03038. Epub 2021 May 30.
6
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.
7
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
8
Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression.
Brainlesion. 2021;12658:157-167. doi: 10.1007/978-3-030-72084-1_15. Epub 2021 Mar 27.
9
WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab649c. Epub 2020 Feb 26.
10
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.

本文引用的文献

1
Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data.
Comput Methods Appl Mech Eng. 2017 Dec 1;327:277-305. doi: 10.1016/j.cma.2017.08.009. Epub 2017 Aug 18.
2
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
3
A fully coupled space-time multiscale modeling framework for predicting tumor growth.
Comput Methods Appl Mech Eng. 2017 Jun 15;320:261-286. doi: 10.1016/j.cma.2017.03.021. Epub 2017 Mar 21.
4
A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(5):B860-B885. doi: 10.1137/17M1114132. Epub 2017 Sep 26.
5
Constrained -regularization schemes for diffeomorphic image registration.
SIAM J Imaging Sci. 2016;9(3):1154-1194. doi: 10.1137/15M1010919. Epub 2016 Aug 30.
6
Selection, calibration, and validation of models of tumor growth.
Math Models Methods Appl Sci. 2016 Nov;26(12):2341-2368. doi: 10.1142/S021820251650055X. Epub 2016 Oct 3.
8
An Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration.
SIAM J Imaging Sci. 2015;8(2):1030-1069. doi: 10.1137/140984002. Epub 2015 May 5.
9
MRI Based Bayesian Personalization of a Tumor Growth Model.
IEEE Trans Med Imaging. 2016 Oct;35(10):2329-2339. doi: 10.1109/TMI.2016.2561098. Epub 2016 Apr 29.
10
Initial In-Vivo Analysis of 3D Heterogeneous Brain Computations for Model-Updated Image-Guided Neurosurgery.
Med Image Comput Comput Assist Interv. 1998 Oct;1496:743-752. doi: 10.1007/BFb0056261.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验