Scheufele Klaudius, Mang Andreas, Gholami Amir, Davatzikos Christos, Biros George, Mehl Miriam
University of Stuttgart, IPVS, Universitätstraße 38, 70569 Stuttgart, Germany.
University of Houston, Department of Mathematics, 3551 Cullen Blvd., Houston, TX 77204-3008, USA.
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for joint image registration and biophysical inversion and we apply it to analyze MR images of glioblastomas (primary brain tumors). We have two applications in mind. The first one is normal-to-abnormal image registration in the presence of tumor-induced topology differences. The second one is biophysical inversion based on single-time patient data. The underlying optimization problem is highly non-linear and non-convex and has not been solved before with a gradient-based approach. Given the segmentation of a normal brain MRI and the segmentation of a cancer patient MRI, we determine tumor growth parameters and a registration map so that if we "grow a tumor" (using our tumor model) in the normal brain and then register it to the patient image, then the registration mismatch is as small as possible. This "" two-way couples the biophysical inversion and the registration problem. In the image registration step we solve a large-deformation diffeomorphic registration problem parameterized by an Eulerian velocity field. In the biophysical inversion step we estimate parameters in a reaction-diffusion tumor growth model that is formulated as a partial differential equation (PDE). In SIBIA, we couple these two sub-components in an iterative manner. We first presented the components of SIBIA in , in which we derived parallel distributed memory algorithms and software modules for the registration and biophysical inverse problems. In this paper, our contributions are the introduction of a PDE-constrained optimization formulation of the coupled problem, and the derivation of a Picard iterative solution scheme. We perform extensive tests to experimentally assess the performance of our method on synthetic and clinical datasets. We demonstrate the convergence of the SIBIA optimization solver in different usage scenarios. We demonstrate that using SIBIA, we can accurately solve the coupled problem in three dimensions (256 resolution) in a few minutes using 11 dual-x86 nodes.
我们提出了SIBIA(基于可扩展集成生物物理学的图像分析),这是一个用于联合图像配准和生物物理反演的框架,并将其应用于分析胶质母细胞瘤(原发性脑肿瘤)的磁共振图像。我们考虑了两个应用。第一个是在存在肿瘤诱导的拓扑差异的情况下进行正常到异常的图像配准。第二个是基于单次患者数据的生物物理反演。潜在的优化问题是高度非线性和非凸的,以前尚未用基于梯度的方法解决。给定正常脑磁共振成像的分割和癌症患者磁共振成像的分割,我们确定肿瘤生长参数和配准图,以便如果我们在正常脑中“生长肿瘤”(使用我们的肿瘤模型),然后将其配准到患者图像,那么配准不匹配尽可能小。这种“双向”将生物物理反演和配准问题耦合在一起。在图像配准步骤中,我们解决了一个由欧拉速度场参数化的大变形微分同胚配准问题。在生物物理反演步骤中,我们在一个反应扩散肿瘤生长模型中估计参数,该模型被表述为一个偏微分方程(PDE)。在SIBIA中,我们以迭代方式将这两个子组件耦合在一起。我们首先在[具体文献]中介绍了SIBIA的组件,在其中我们推导了用于配准和生物物理反演问题的并行分布式内存算法和软件模块。在本文中,我们的贡献是引入了耦合问题的偏微分方程约束优化公式,以及推导了皮卡迭代求解方案。我们进行了广泛的测试,以通过实验评估我们的方法在合成和临床数据集上的性能。我们展示了SIBIA优化求解器在不同使用场景下的收敛性。我们证明,使用SIBIA,我们可以在几分钟内使用1台双x86节点在三维(256分辨率)中准确地解决耦合问题。