Suppr超能文献

表达海肾荧光素酶的脊髓灰质炎病毒缺陷干扰颗粒的进化。

Evolution of poliovirus defective interfering particles expressing Gaussia luciferase.

机构信息

Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA.

出版信息

J Virol. 2012 Feb;86(4):1999-2010. doi: 10.1128/JVI.05871-11. Epub 2011 Dec 7.

Abstract

Polioviruses (PVs) carrying a reporter gene are useful tools for studies of virus replication, particularly if the viral chimeras contain the polyprotein that provides all of the proteins necessary for a complete replication cycle. Replication in HeLa cells of a previously constructed poliovirus expressing the gene for Renilla luciferase (RLuc) fused to the N terminus of the polyprotein H(2)N-RLuc-P1-P2-P3-COOH (P1, structural domain; P2 and P3, nonstructural domains) led to the deletion of RLuc after only one passage. Here we describe a novel poliovirus chimera that expresses Gaussia luciferase (GLuc) inserted into the polyprotein between P1 and P2 (N(2)H-P1-GLuc-P2-P3-COOH). This chimera, termed PV-GLuc, replicated to 10% of wild-type yield. The reporter signal was fully retained for three passages and then gradually lost. After six passages the signal was barely detectable. On further passages, however, the GLuc signal reappeared, and after eight passages it had reached the same levels observed with the original PV-GLuc at the first passage. We demonstrated that this surprising observation was due to coevolution of defective interfering (DI) particles that had lost part or all of the capsid coding sequence (ΔP1-GLuc-P2-P3) and wild-type-like viruses that had lost the GLuc sequence (P1-P2-P3). When used at low passage, PV-GLuc is an excellent tool for studying aspects of genome replication and morphogenesis. The GLuc protein was secreted from mammalian cells but, in agreement with published data, was not secreted from PV-GLuc-infected cells due to poliovirus-induced inhibition of cellular protein secretion. Published evidence indicates that individual expression of enterovirus polypeptide 3A, 2B, or 2BC in COS-1 cells strongly inhibits host protein secretion. In HeLa cells, however, expression of none of the poliovirus polypeptides, either singly or in pairs, inhibited GLuc secretion. Thus, inhibition of GLuc secretion in PV-infected HeLa cells is likely a result of the interaction between several viral and cellular proteins that are different from those in COS-1 cells.

摘要

携带报告基因的脊髓灰质炎病毒(PVs)是研究病毒复制的有用工具,特别是如果病毒嵌合体包含提供完整复制周期所需的所有蛋白质的多蛋白。先前构建的表达 Renilla 荧光素酶(RLuc)基因的脊髓灰质炎病毒在 HeLa 细胞中的复制,该基因融合到多蛋白的 N 末端 H(2)N-RLuc-P1-P2-P3-COOH(P1,结构域;P2 和 P3,非结构域),仅经过一次传代就导致 RLuc 缺失。在这里,我们描述了一种新型脊髓灰质炎病毒嵌合体,该嵌合体在 P1 和 P2 之间的多蛋白中表达 Gaussia 荧光素酶(GLuc)(N(2)H-P1-GLuc-P2-P3-COOH)。这种嵌合体称为 PV-GLuc,其复制效率为野生型的 10%。报告信号完全保留了三个传代,然后逐渐丢失。经过六次传代后,信号几乎无法检测到。然而,在进一步的传代中,GLuc 信号再次出现,并且在第八次传代后,它达到了与原始 PV-GLuc 在第一次传代时相同的水平。我们证明,这种惊人的观察结果是由于缺陷干扰(DI)颗粒的共同进化引起的,这些颗粒丢失了部分或全部衣壳编码序列(ΔP1-GLuc-P2-P3)和丢失了 GLuc 序列的野生型样病毒(P1-P2-P3)。当在低传代时使用时,PV-GLuc 是研究基因组复制和形态发生的极好工具。GLuc 蛋白从哺乳动物细胞中分泌出来,但与已发表的数据一致,由于脊髓灰质炎病毒诱导的细胞蛋白分泌抑制,它不会从感染 PV-GLuc 的细胞中分泌出来。已发表的证据表明,在 COS-1 细胞中单独表达肠病毒多肽 3A、2B 或 2BC 会强烈抑制宿主蛋白的分泌。然而,在 HeLa 细胞中,无论是单独表达还是成对表达,都没有一种脊髓灰质炎病毒多肽抑制 GLuc 分泌。因此,PV 感染的 HeLa 细胞中 GLuc 分泌的抑制可能是几种病毒和细胞蛋白相互作用的结果,这些蛋白与 COS-1 细胞中的不同。

相似文献

1
Evolution of poliovirus defective interfering particles expressing Gaussia luciferase.
J Virol. 2012 Feb;86(4):1999-2010. doi: 10.1128/JVI.05871-11. Epub 2011 Dec 7.
4
Requirements for RNA replication of a poliovirus replicon by coxsackievirus B3 RNA polymerase.
J Virol. 1999 Nov;73(11):9413-21. doi: 10.1128/JVI.73.11.9413-9421.1999.
6
Studies on dicistronic polioviruses implicate viral proteinase 2Apro in RNA replication.
Virology. 1993 Oct;196(2):739-47. doi: 10.1006/viro.1993.1531.
7
Insertion and stable expression of Gaussia luciferase gene by the genome of bovine viral diarrhea virus.
Res Vet Sci. 2014 Oct;97(2):439-48. doi: 10.1016/j.rvsc.2014.07.007. Epub 2014 Jul 15.
10
Development of a stable Gaussia luciferase enterovirus 71 reporter virus.
J Virol Methods. 2015 Jul;219:62-66. doi: 10.1016/j.jviromet.2015.03.020. Epub 2015 Apr 2.

引用本文的文献

1
Seneca Valley virus replicons are packaged in and have the capacity to overcome the limitations of viral transgene expression.
Mol Ther Oncolytics. 2023 Feb 16;28:321-333. doi: 10.1016/j.omto.2023.02.005. eCollection 2023 Mar 16.
2
The evolution of cheating in viruses.
Nat Commun. 2021 Nov 26;12(1):6928. doi: 10.1038/s41467-021-27293-6.
4
5
Emergency Services of Viral RNAs: Repair and Remodeling.
Microbiol Mol Biol Rev. 2018 Mar 14;82(2). doi: 10.1128/MMBR.00067-17. Print 2018 Jun.
7
Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool.
PLoS One. 2016 Sep 12;11(9):e0162771. doi: 10.1371/journal.pone.0162771. eCollection 2016.
8
Identification of two functionally redundant RNA elements in the coding sequence of poliovirus using computer-generated design.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14301-7. doi: 10.1073/pnas.1211484109. Epub 2012 Aug 10.

本文引用的文献

1
Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells.
J Virol. 2011 May;85(9):4284-96. doi: 10.1128/JVI.02398-10. Epub 2011 Feb 23.
2
Viral security proteins: counteracting host defences.
Nat Rev Microbiol. 2010 Dec;8(12):867-78. doi: 10.1038/nrmicro2452. Epub 2010 Nov 9.
3
Identification of tolerated insertion sites in poliovirus non-structural proteins.
Virology. 2011 Jan 5;409(1):1-11. doi: 10.1016/j.virol.2010.09.028. Epub 2010 Oct 23.
5
Viral reorganization of the secretory pathway generates distinct organelles for RNA replication.
Cell. 2010 May 28;141(5):799-811. doi: 10.1016/j.cell.2010.03.050.
6
Viable polioviruses that encode 2A proteins with fluorescent protein tags.
J Virol. 2010 Feb;84(3):1477-88. doi: 10.1128/JVI.01578-09. Epub 2009 Nov 25.
7
A critical role of a cellular membrane traffic protein in poliovirus RNA replication.
PLoS Pathog. 2008 Nov;4(11):e1000216. doi: 10.1371/journal.ppat.1000216. Epub 2008 Nov 21.
8
Modification of intracellular membrane structures for virus replication.
Nat Rev Microbiol. 2008 May;6(5):363-74. doi: 10.1038/nrmicro1890.
9
INTERFERENCE OF INACTIVE VIRUS WITH THE PROPAGATION OF VIRUS OF INFLUENZA.
Science. 1943 Jul 23;98(2534):87-9. doi: 10.1126/science.98.2534.87.
10
Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex.
J Cell Sci. 2007 Sep 15;120(Pt 18):3207-18. doi: 10.1242/jcs.03483. Epub 2007 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验