Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07101-1709, USA.
Neurodegener Dis. 2012;10(1-4):60-3. doi: 10.1159/000332815. Epub 2011 Dec 7.
Could a normal--but persistent--stress response to impeded axonal transport lead to late-onset Alzheimer's disease (AD)? Our results offer an affirmative answer, suggesting a mechanism for the abnormal production of amyloid-β (Aβ), triggered by the slowed axonal transport at old age. We hypothesize that Aβ precursor protein (APP) is a sensor at the endoplasmic reticulum (ER) that detects, and signals to the nucleus, abnormalities in axonal transport. When persistently activated, due to chronically slowed-down transport, this signaling pathway leads to accumulation of Aβ within the ER.
We tested this hypothesis with the neuronal cell line CAD. We show that, normally, a fraction of APP is transported into neurites by recruiting kinesin-1 via the adaptor protein, Fe65. Under conditions that block kinesin-1-dependent transport, APP, Fe65 and kinesin-1 accumulate in the soma, and form a complex at the ER. This complex recruits active c-Jun N-terminal kinase (JNK), which phosphorylates APP at Thr(668). This phosphorylation increases the cleavage of APP by the amyloidogenic pathway, which generates Aβ within the ER lumen, and releases Fe65 into the cytoplasm. Part of the released Fe65 translocates into the nucleus, likely to initiate a gene transcription response to arrested transport. Prolonged arrest of kinesin-1-dependent transport could thus lead to accumulation and oligomerization of Aβ in the ER.
These results support a model where the APP:Fe65 complex is a sensor at the ER for detecting the increased level of kinesin-1 caused by halted transport, which signals to the nucleus, while concomitantly generating an oligomerization-prone pool of Aβ in the ER. Our hypothesis could thus explain a pathogenic mechanism in AD.
轴突运输受阻导致的持续正常应激反应是否会引发迟发性阿尔茨海默病(AD)?我们的研究结果给出了肯定的答案,这提示了一种异常的淀粉样β(Aβ)产生机制,其触发因素是衰老时轴突运输的减缓。我们假设,APP 是内质网(ER)中的一种传感器,可检测轴突运输异常,并向细胞核发出信号。当由于慢性运输减缓而持续激活时,该信号通路会导致 Aβ 在 ER 内积累。
我们使用神经元细胞系 CAD 对这一假说进行了验证。结果表明,正常情况下,APP 的一部分通过与衔接蛋白 Fe65 结合招募动力蛋白-1,从而被转运到轴突中。在阻断动力蛋白-1依赖性运输的条件下,APP、Fe65 和动力蛋白-1 在内体中积累,并在 ER 处形成复合物。该复合物募集活性 c-Jun N 末端激酶(JNK),后者可使 APP 在 Thr668 位点发生磷酸化。这种磷酸化增加了 APP 通过淀粉样蛋白途径的切割,从而导致 Aβ 在 ER 腔中生成,并将 Fe65 释放到细胞质中。部分释放的 Fe65 易位到细胞核内,可能引发对阻滞运输的基因转录反应。因此,动力蛋白-1 依赖性运输的持续阻滞可能导致 Aβ 在 ER 中积累和寡聚化。
这些结果支持了一种假说,即 APP:Fe65 复合物是 ER 中用于检测因运输停止而增加的动力蛋白-1水平的传感器,该复合物向细胞核发出信号,同时在 ER 中产生具有易于寡聚化的 Aβ 池。因此,我们的假说可以解释 AD 的一种致病机制。