Suppr超能文献

基于表面肌电信号过零率的全面性强直-阵挛性癫痫发作起始的自动算法。

Automated algorithm for generalized tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate.

机构信息

Biomedical Department of Electrical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

出版信息

IEEE Trans Biomed Eng. 2012 Feb;59(2):579-85. doi: 10.1109/TBME.2011.2178094. Epub 2011 Dec 5.

Abstract

Patients are not able to call for help during a generalized tonic-clonic epileptic seizure. Our objective was to develop a robust generic algorithm for automatic detection of tonic-clonic seizures, based on surface electromyography (sEMG) signals suitable for a portable device. Twenty-two seizures were analyzed from 11 consecutive patients. Our method is based on a high-pass filtering with a cutoff at 150 Hz, and monitoring a count of zero crossings with a hysteresis of ±50 μV . Based on data from one sEMG electrode (on the deltoid muscle), we achieved a sensitivity of 100% with a mean detection latency of 13.7 s, while the rate of false detection was limited to 1 false alarm per 24 h. The overall performance of the presented generic algorithm is adequate for clinical implementation.

摘要

患者在全身性强直-阵挛性癫痫发作期间无法呼救。我们的目标是开发一种基于表面肌电图(sEMG)信号的稳健通用算法,用于自动检测强直-阵挛性癫痫发作,适用于便携式设备。对 11 名连续患者的 22 次癫痫发作进行了分析。我们的方法基于截止频率为 150 Hz 的高通滤波,并监测零交叉计数,滞后为±50 μV。基于一个 sEMG 电极(三角肌)的数据,我们实现了 100%的灵敏度,平均检测潜伏期为 13.7 s,而误报率限制为每 24 小时 1 次误报。所提出的通用算法的整体性能足以用于临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验