Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia.
Epilepsia. 2022 Aug;63(8):1930-1941. doi: 10.1111/epi.17297. Epub 2022 May 28.
This study was undertaken to review the reported performance of noninvasive wearable devices in detecting epileptic seizures and psychogenic nonepileptic seizures (PNES).
We conducted a systematic review and meta-analysis of studies reported up to November 15, 2021. We included studies that used video-electroencephalographic (EEG) monitoring as the gold standard to determine the sensitivity and false alarm rate (FAR) of noninvasive wearables for automated seizure detection.
Twenty-eight studies met the criteria for the systematic review, of which 23 were eligible for meta-analysis. These studies (1269 patients in total, median recording time = 52.9 h per patient) investigated devices for tonic-clonic seizures using wrist-worn and/or ankle-worn devices to measure three-dimensional accelerometry (15 studies), and/or wearable surface devices to measure electromyography (eight studies). The mean sensitivity for detecting tonic-clonic seizures was .91 (95% confidence interval [CI] = .85-.96, I = 83.8%); sensitivity was similar between the wrist-worn (.93) and surface devices (.90). The overall FAR was 2.1/24 h (95% CI = 1.7-2.6, I = 99.7%); FAR was higher in wrist-worn (2.5/24 h) than in wearable surface devices (.96/24 h). Three of the 23 studies also detected PNES; the mean sensitivity and FAR from these studies were 62.9% and .79/24 h, respectively. Four studies detected both focal and tonic-clonic seizures, and one study detected focal seizures only; the sensitivities ranged from 31.1% to 93.1% in these studies.
Reported noninvasive wearable devices had high sensitivity but relatively high FARs in detecting tonic-clonic seizures during limited recording time in a video-EEG setting. Future studies should focus on reducing FAR, detection of other seizure types and PNES, and longer recording in the community.
本研究旨在综述非侵入性可穿戴设备在检测癫痫发作和心因性非癫痫发作(PNES)方面的报告性能。
我们对截至 2021 年 11 月 15 日报告的研究进行了系统回顾和荟萃分析。我们纳入了使用视频脑电图(EEG)监测作为金标准来确定非侵入性可穿戴设备自动检测癫痫发作的敏感性和假警报率(FAR)的研究。
28 项研究符合系统评价标准,其中 23 项研究符合荟萃分析标准。这些研究(共 1269 名患者,每名患者的中位记录时间为 52.9 小时)使用腕戴式和/或踝戴式设备测量三维加速度计(15 项研究)和/或可穿戴表面设备测量肌电图(8 项研究)来研究强直-阵挛性发作的设备。检测强直-阵挛性发作的平均敏感性为 0.91(95%置信区间[CI]:0.85-0.96,I=83.8%);腕戴式设备(0.93)和表面设备(0.90)的敏感性相似。总的 FAR 为 2.1/24 小时(95%CI=1.7-2.6,I=99.7%);腕戴式设备的 FAR 较高(2.5/24 小时),而可穿戴表面设备的 FAR 较低(0.96/24 小时)。23 项研究中有 3 项还检测到 PNES;这些研究的平均敏感性和 FAR 分别为 62.9%和 0.79/24 小时。四项研究同时检测到局灶性和强直-阵挛性发作,一项研究仅检测到局灶性发作;这些研究的敏感性范围为 31.1%-93.1%。
在视频 EEG 环境中,有限的记录时间内,报告的非侵入性可穿戴设备在检测强直-阵挛性发作方面具有高敏感性,但 FAR 相对较高。未来的研究应侧重于降低 FAR、检测其他发作类型和 PNES 以及在社区中进行更长时间的记录。