Suppr超能文献

工程嗜热古菌 Pyrococcus furiosus 以过表达其细胞质 [NiFe]-氢化酶。

Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA.

出版信息

J Biol Chem. 2012 Jan 27;287(5):3257-64. doi: 10.1074/jbc.M111.290916. Epub 2011 Dec 7.

Abstract

The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.

摘要

火球菌的细胞质氢化酶(SHI)是一种依赖 NADP(H)的异四聚体酶,含有镍铁催化位点、黄素和六个铁硫簇。它在体外的一系列生物能源系统中有潜在的应用价值,但在其使用中存在一个主要障碍,即无法产生足够数量的酶。我们利用最近开发的遗传系统对火球菌进行了工程改造,以过度表达 SHI。在过表达(OE-SHI)菌株中,四个基因的 SHI 操纵子的转录受强组成型启动子的控制,并且在一个亚基的 N 端添加了 Strep-tag II。OE-SHI 和野生型火球菌在麦芽糖上的生长和 H(2)产生速率相似。OE-SHI 菌株的多顺反子氢化酶 mRNA 编码 SHI 的转录水平高出 20 倍,细胞质氢化酶的比活高出约 10 倍,尽管这两种菌株中编码 SHI 加工和成熟的基因的表达水平相同。通过使用 Strep-tag II 进行单一亲和层析步骤,可纯化过表达的 SHI,它与天然形式具有相似的活性和物理性质。与之前报道的最高同源[NiFe]-氢化酶系统(来自集胞藻)相比,OE-SHI 菌株每克细胞(湿重)的蛋白产率提高了 100 倍。这个新的火球菌系统将允许对 SHI 进行进一步的工程改造,并为高效的体外生物制氢提供氢化酶。

相似文献

1
Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.
J Biol Chem. 2012 Jan 27;287(5):3257-64. doi: 10.1074/jbc.M111.290916. Epub 2011 Dec 7.
2
High yield purification of a tagged cytoplasmic [NiFe]-hydrogenase and a catalytically-active nickel-free intermediate form.
Protein Expr Purif. 2015 Mar;107:90-4. doi: 10.1016/j.pep.2014.10.018. Epub 2014 Nov 21.
4
5
Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus.
Methods Enzymol. 2018;613:153-168. doi: 10.1016/bs.mie.2018.10.009. Epub 2018 Nov 23.

引用本文的文献

1
An unprecedented function for a tungsten-containing oxidoreductase.
J Biol Inorg Chem. 2022 Dec;27(8):747-758. doi: 10.1007/s00775-022-01965-0. Epub 2022 Oct 21.
2
Encapsulins.
Annu Rev Biochem. 2022 Jun 21;91:353-380. doi: 10.1146/annurev-biochem-040320-102858. Epub 2022 Mar 18.
3
Large-scale computational discovery and analysis of virus-derived microbial nanocompartments.
Nat Commun. 2021 Aug 6;12(1):4748. doi: 10.1038/s41467-021-25071-y.
4
Methanosarcina acetivorans contains a functional ISC system for iron-sulfur cluster biogenesis.
BMC Microbiol. 2020 Oct 23;20(1):323. doi: 10.1186/s12866-020-02014-z.
6
Characterization of thiosulfate reductase from Pyrobaculum aerophilum heterologously produced in Pyrococcus furiosus.
Extremophiles. 2020 Jan;24(1):53-62. doi: 10.1007/s00792-019-01112-9. Epub 2019 Jul 5.
8
Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes.
J Biol Chem. 2018 Oct 26;293(43):16687-16696. doi: 10.1074/jbc.RA118.005092. Epub 2018 Sep 4.
9
Biotechnology of extremely thermophilic archaea.
FEMS Microbiol Rev. 2018 Sep 1;42(5):543-578. doi: 10.1093/femsre/fuy012.
10
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H-driven NAD-reduction in the presence of O.
Biochim Biophys Acta Bioenerg. 2018 Jan;1859(1):8-18. doi: 10.1016/j.bbabio.2017.09.006. Epub 2017 Sep 29.

本文引用的文献

2
Properties of recombinant Strep-tagged and untagged hyperthermophilic D-arabitol dehydrogenase from Thermotoga maritima.
Appl Microbiol Biotechnol. 2011 May;90(4):1285-93. doi: 10.1007/s00253-011-3187-5. Epub 2011 Feb 24.
5
Microbial metalloproteomes are largely uncharacterized.
Nature. 2010 Aug 5;466(7307):779-82. doi: 10.1038/nature09265. Epub 2010 Jul 18.
6
Biofuel production by in vitro synthetic enzymatic pathway biotransformation.
Curr Opin Biotechnol. 2010 Oct;21(5):663-9. doi: 10.1016/j.copbio.2010.05.005. Epub 2010 Jun 19.
8
Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site.
Chemphyschem. 2010 Apr 26;11(6):1127-40. doi: 10.1002/cphc.200900950.
9
Biological hydrogen production: prospects and challenges.
Trends Biotechnol. 2010 May;28(5):262-71. doi: 10.1016/j.tibtech.2010.01.007. Epub 2010 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验