Suppr超能文献

在 O 的存在下进行 H 驱动的 NAD 还原反应的热稳定 [NiFe]-氢化酶的酶学和光谱性质。

Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H-driven NAD-reduction in the presence of O.

机构信息

Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.

Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany.

出版信息

Biochim Biophys Acta Bioenerg. 2018 Jan;1859(1):8-18. doi: 10.1016/j.bbabio.2017.09.006. Epub 2017 Sep 29.

Abstract

Biocatalysts that mediate the H-dependent reduction of NAD to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1 (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H-mediated NAD reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H-driven cofactor recycling under oxic conditions at elevated temperatures.

摘要

从基础和应用的角度来看,介导 H 依赖性 NAD 还原为 NADH 的生物催化剂具有吸引力。在这里,我们首次对一种能够在高温和 O 存在下(通常作为抑制剂)维持催化活性的 NAD 还原 [NiFe]-氢化酶进行了生化和光谱学表征。我们从嗜热β变形菌 Hydrogenophilus thermoluteolus TH-1(Ht)中分离并测序了编码可溶性 NAD 还原 [NiFe]-氢化酶(SH)的四个结构基因 hoxFUYH。在经过深入研究的 H 氧化β变形菌 Ralstonia eutropha H16(Re)的一种不含氢化酶的突变体中,重组过量生产了 HtSH。使用各种生化和光谱技术对该酶进行了纯化和表征。在 80°C 和 pH6.5 下观察到最高的 H 介导的 NAD 还原活性,并且发现催化活性在低 O 浓度下得以维持。红外光谱分析显示,分离出的 HtSH 的光谱模式与密切相关的 ReSH 和其他 [NiFe]-氢化酶的光谱模式明显不同。这表明 HtSH 中氧化催化中心的配置异常。补充电子顺磁共振光谱分析显示出与相关 NAD 还原 [NiFe]-氢化酶相似的光谱特征。这项研究为 HtSH 的结构和功能分析以及在高温下有氧条件下应用该酶进行 H 驱动辅助因子回收奠定了基础。

相似文献

1
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H-driven NAD-reduction in the presence of O.
Biochim Biophys Acta Bioenerg. 2018 Jan;1859(1):8-18. doi: 10.1016/j.bbabio.2017.09.006. Epub 2017 Sep 29.
3
Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
J Am Chem Soc. 2013 Nov 27;135(47):17897-905. doi: 10.1021/ja408420d. Epub 2013 Nov 15.
5
NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases.
FEBS Lett. 2012 Mar 9;586(5):545-56. doi: 10.1016/j.febslet.2011.10.010. Epub 2011 Nov 2.
6
Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen.
J Am Chem Soc. 2022 Sep 21;144(37):17022-17032. doi: 10.1021/jacs.2c06400. Epub 2022 Sep 9.
7
Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy.
J Phys Chem B. 2015 Oct 29;119(43):13834-41. doi: 10.1021/acs.jpcb.5b04144. Epub 2015 Aug 10.
10
Crystallization and preliminary X-ray analysis of the NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus TH-1.
Acta Crystallogr F Struct Biol Commun. 2015 Jan 1;71(Pt 1):96-9. doi: 10.1107/S2053230X14026521.

引用本文的文献

1
Development of a Universal Platform for the Heterologous Expression of Bidirectional [Ni-Fe]-Hydrogenases in .
ACS Synth Biol. 2025 Jul 18;14(7):2710-2717. doi: 10.1021/acssynbio.5c00150. Epub 2025 Jun 16.
2
Functional roles of the [2Fe-2S] clusters in Synechocystis PCC 6803 Hox [NiFe]-hydrogenase reactivity with ferredoxins.
J Biol Chem. 2024 Dec;300(12):107936. doi: 10.1016/j.jbc.2024.107936. Epub 2024 Oct 28.
3
Outer-sphere effects on the O sensitivity, catalytic bias and catalytic reversibility of hydrogenases.
Chem Sci. 2024 Mar 15;15(15):5418-5433. doi: 10.1039/d4sc00691g. eCollection 2024 Apr 17.
5
Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections.
Front Bioeng Biotechnol. 2021 Aug 12;9:710035. doi: 10.3389/fbioe.2021.710035. eCollection 2021.
7
Metal-ligand cooperativity in the soluble hydrogenase-1 from .
Chem Sci. 2020 Jul 30;11(32):8572-8581. doi: 10.1039/d0sc00628a.

本文引用的文献

1
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14722-14726. doi: 10.1073/pnas.1614656113. Epub 2016 Dec 5.
2
Enzyme-Modified Particles for Selective Biocatalytic Hydrogenation by Hydrogen-Driven NADH Recycling.
ChemCatChem. 2015 Nov;7(21):3480-3487. doi: 10.1002/cctc.201500766. Epub 2015 Oct 28.
3
The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.
J Am Chem Soc. 2015 Oct 28;137(42):13556-65. doi: 10.1021/jacs.5b07680. Epub 2015 Oct 16.
6
Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy.
J Phys Chem B. 2015 Oct 29;119(43):13834-41. doi: 10.1021/acs.jpcb.5b04144. Epub 2015 Aug 10.
7
Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes.
Phys Chem Chem Phys. 2015 Jul 28;17(28):18222-37. doi: 10.1039/c5cp02447a.
8
Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen.
Org Lett. 2015 May 15;17(10):2431-3. doi: 10.1021/acs.orglett.5b01154. Epub 2015 May 6.
9
Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase.
J Am Chem Soc. 2015 Apr 8;137(13):4558-66. doi: 10.1021/jacs.5b01791. Epub 2015 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验