Suppr超能文献

Sirt1 蛋白介导的去乙酰化作用调节糖酵解酶磷酸甘油酸变位酶-1。

Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.

机构信息

Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53715, USA.

出版信息

J Biol Chem. 2012 Feb 3;287(6):3850-8. doi: 10.1074/jbc.M111.317404. Epub 2011 Dec 7.

Abstract

Emerging proteomic evidence suggests that acetylation of metabolic enzymes is a prevalent post-translational modification. In a few recent reports, acetylation down-regulated activity of specific enzymes in fatty acid oxidation, urea cycle, electron transport, and anti-oxidant pathways. Here, we reveal that the glycolytic enzyme phosphoglycerate mutase-1 (PGAM1) is negatively regulated by Sirt1, a member of the NAD(+)-dependent protein deacetylases. Acetylated PGAM1 displays enhanced activity, although Sirt1-mediated deacetylation reduces activity. Acetylation sites mapped to the C-terminal "cap," a region previously known to affect catalytic efficiency. Overexpression of a constitutively active variant (acetylated mimic) of PGAM1 stimulated flux through glycolysis. Under glucose restriction, Sirt1 levels dramatically increased, leading to PGAM1 deacetylation and attenuated activity. Previously, Sirt1 has been implicated in the adaptation from glucose to fat burning. This study (i) demonstrates that protein acetylation can stimulate metabolic enzymes, (ii) provides biochemical evidence that glycolysis is modulated by reversible acetylation, and (iii) demonstrates that PGAM1 deacetylation and activity are directly controlled by Sirt1.

摘要

新兴的蛋白质组学证据表明,代谢酶的乙酰化是一种普遍的翻译后修饰。在最近的一些报告中,乙酰化下调了脂肪酸氧化、尿素循环、电子传递和抗氧化途径中特定酶的活性。在这里,我们揭示了糖酵解酶磷酸甘油酸变位酶-1(PGAM1)受 NAD(+)-依赖的蛋白去乙酰化酶 Sirt1 的负调控。乙酰化的 PGAM1 显示出增强的活性,尽管 Sirt1 介导的去乙酰化降低了活性。乙酰化位点映射到 C 末端“帽”,这是一个先前已知影响催化效率的区域。PGAM1 的组成活性变体(乙酰化模拟物)的过表达刺激了糖酵解途径的通量。在葡萄糖限制下,Sirt1 水平显著增加,导致 PGAM1 去乙酰化和活性降低。先前,Sirt1 已被牵连到从葡萄糖到脂肪燃烧的适应中。本研究(i)表明蛋白质乙酰化可以刺激代谢酶,(ii)提供了生化证据表明糖酵解可通过可逆乙酰化进行调节,以及(iii)表明 PGAM1 的去乙酰化和活性可直接受到 Sirt1 的控制。

相似文献

1
Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.
J Biol Chem. 2012 Feb 3;287(6):3850-8. doi: 10.1074/jbc.M111.317404. Epub 2011 Dec 7.
2
AU-1 from Agavaceae plants downregulates the expression of glycolytic enzyme phosphoglycerate mutase.
J Nat Med. 2018 Jan;72(1):342-346. doi: 10.1007/s11418-017-1154-x. Epub 2017 Nov 20.
3
Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase.
Cancer Res. 2014 Jul 1;74(13):3630-42. doi: 10.1158/0008-5472.CAN-13-3615. Epub 2014 May 1.
4
Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate.
Nat Chem Biol. 2017 Oct;13(10):1081-1087. doi: 10.1038/nchembio.2453. Epub 2017 Aug 7.
5
Phosphoglycerate mutase 1 in cancer: A promising target for diagnosis and therapy.
IUBMB Life. 2019 Oct;71(10):1418-1427. doi: 10.1002/iub.2100. Epub 2019 Jun 6.
6
PGAM1 Promotes Glycolytic Metabolism and Paclitaxel Resistance via Pyruvic Acid Production in Ovarian Cancer Cells.
Front Biosci (Landmark Ed). 2022 Sep 16;27(9):262. doi: 10.31083/j.fbl2709262.
7
Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth.
Cancer Cell. 2012 Nov 13;22(5):585-600. doi: 10.1016/j.ccr.2012.09.020.
8
Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity.
Oncogene. 2017 May 18;36(20):2900-2909. doi: 10.1038/onc.2016.446. Epub 2016 Dec 19.
10
PGAM1 regulates the glycolytic metabolism of SCs in tibetan sheep and its influence on the development of SCs.
Gene. 2021 Dec 15;804:145897. doi: 10.1016/j.gene.2021.145897. Epub 2021 Aug 19.

引用本文的文献

1
The Role of Sirtuins in Bone Repair From the Perspective of Glucose Metabolism.
Int J Gen Med. 2025 Sep 1;18:5013-5031. doi: 10.2147/IJGM.S530523. eCollection 2025.
2
An approach to learn regulation to maximize growth and entropy production rates in metabolism.
Front Syst Biol. 2023 Apr 5;3:981866. doi: 10.3389/fsysb.2023.981866. eCollection 2023.
3
RB1 controls differentiation through positive regulation of phosphoglycerate mutases.
Cell Death Dis. 2025 Jul 24;16(1):559. doi: 10.1038/s41419-025-07850-3.
4
The role of SIRT1 in the development of gastrointestinal tumors.
Front Cell Dev Biol. 2025 Jun 11;13:1606530. doi: 10.3389/fcell.2025.1606530. eCollection 2025.
5
Glycolytic Dysfunction in Granulosa Cells and Its Contribution to Metabolic Dysfunction in Polycystic Ovary Syndrome.
Drug Des Devel Ther. 2025 Jun 18;19:5255-5270. doi: 10.2147/DDDT.S525651. eCollection 2025.
6
Caloric Restriction and Sirtuins as New Players to Reshape Male Fertility.
Metabolites. 2025 May 2;15(5):303. doi: 10.3390/metabo15050303.
7
Dynamic Mapping of the Methylproteome Using a Chemoenzymatic Approach.
J Am Chem Soc. 2025 Mar 5;147(9):7214-7230. doi: 10.1021/jacs.4c08175. Epub 2025 Feb 25.
8
Metabolic reprogramming in the spinal cord drives the transition to pain chronicity.
bioRxiv. 2025 Feb 1:2025.01.30.635746. doi: 10.1101/2025.01.30.635746.
9
The role of acetylation and deacetylation in cancer metabolism.
Clin Transl Med. 2025 Jan;15(1):e70145. doi: 10.1002/ctm2.70145.
10
Nimbidiol protects from renal injury by alleviating redox imbalance in diabetic mice.
Front Pharmacol. 2024 May 21;15:1369408. doi: 10.3389/fphar.2024.1369408. eCollection 2024.

本文引用的文献

1
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.
Mol Cell. 2011 Jan 21;41(2):139-49. doi: 10.1016/j.molcel.2011.01.002.
2
Fructose induces gluconeogenesis and lipogenesis through a SIRT1-dependent mechanism.
J Endocrinol. 2011 Mar;208(3):273-83. doi: 10.1530/JOE-10-0190. Epub 2011 Jan 6.
4
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation.
Cell Metab. 2010 Dec 1;12(6):662-7. doi: 10.1016/j.cmet.2010.11.015.
7
Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1.
Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E312-20. doi: 10.1152/ajpendo.00524.2010. Epub 2010 Nov 16.
8
Sirtuin-1 regulation of mammalian metabolism.
Trends Mol Med. 2011 Jan;17(1):8-13. doi: 10.1016/j.molmed.2010.09.005.
9
Aging and disease: connections to sirtuins.
Aging Cell. 2010 Apr;9(2):285-90. doi: 10.1111/j.1474-9726.2010.00548.x.
10
Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases.
Trends Pharmacol Sci. 2010 May;31(5):212-20. doi: 10.1016/j.tips.2010.02.003. Epub 2010 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验