Department of Materials Science and Engineering, Evanston, Illinois 60208-3113, USA.
Nat Nanotechnol. 2011 Dec 11;7(1):24-8. doi: 10.1038/nnano.2011.222.
Crystalline nanoparticle arrays and superlattices with well-defined geometries can be synthesized by using appropriate electrostatic, hydrogen-bonding or biological recognition interactions. Although superlattices with many distinct geometries can be produced using these approaches, the library of achievable lattices could be increased by developing a strategy that allows some of the nanoparticles within a binary lattice to be replaced with 'spacer' entities that are constructed to mimic the behaviour of the nanoparticles they replace, even though they do not contain an inorganic core. The inclusion of these spacer entities within a known binary superlattice would effectively delete one set of nanoparticles without affecting the positions of the other set. Here, we show how hollow DNA nanostructures can be used as 'three-dimensional spacers' within nanoparticle superlattices assembled through programmable DNA interactions. We show that this strategy can be used to form superlattices with five distinct symmetries, including one that has never before been observed in any crystalline material.
通过利用适当的静电、氢键或生物识别相互作用,可以合成具有明确定义几何形状的晶体纳米粒子阵列和超晶格。尽管可以使用这些方法来制备具有许多不同几何形状的超晶格,但通过开发一种策略,可以增加可实现的晶格库,该策略允许在二进制晶格中的一些纳米粒子被“间隔物”实体所取代,这些间隔物实体被构造为模拟它们所取代的纳米粒子的行为,即使它们不包含无机核。将这些间隔物实体包含在已知的二进制超晶格中,将有效地删除一组纳米粒子,而不影响另一组纳米粒子的位置。在这里,我们展示了如何在通过可编程 DNA 相互作用组装的纳米粒子超晶格中使用空心 DNA 结构作为“三维间隔物”。我们表明,该策略可用于形成具有五种不同对称性的超晶格,包括以前在任何结晶材料中都没有观察到的一种对称性。