Suppr超能文献

机械诱导淋巴管扩张。

Mechanoinduction of lymph vessel expansion.

机构信息

Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.

出版信息

EMBO J. 2012 Feb 15;31(4):788-804. doi: 10.1038/emboj.2011.456. Epub 2011 Dec 13.

Abstract

In the mammalian embryo, few mechanical signals have been identified to influence organ development and function. Here, we report that an increase in the volume of interstitial or extracellular fluid mechanically induces growth of an organ system, that is, the lymphatic vasculature. We first demonstrate that lymph vessel expansion in the developing mouse embryo correlates with a peak in interstitial fluid pressure and lymphatic endothelial cell (LEC) elongation. In 'loss-of-fluid' experiments, we then show that aspiration of interstitial fluid reduces the length of LECs, decreases tyrosine phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR3), and inhibits LEC proliferation. Conversely, in 'gain-of-fluid' experiments, increasing the amount of interstitial fluid elongates the LECs, and increases both VEGFR3 phosphorylation and LEC proliferation. Finally, we provide genetic evidence that β1 integrins are required for the proliferative response of LECs to both fluid accumulation and cell stretching and, therefore, are necessary for lymphatic vessel expansion and fluid drainage. Thus, we propose a new and physiologically relevant mode of VEGFR3 activation, which is based on mechanotransduction and is essential for normal development and fluid homeostasis in a mammalian embryo.

摘要

在哺乳动物胚胎中,很少有机械信号被鉴定出来可以影响器官的发育和功能。在这里,我们报告说,间质或细胞外液体积的增加会机械地诱导器官系统的生长,即淋巴管系统。我们首先证明,在发育中的小鼠胚胎中,淋巴管的扩张与间质液压力峰值和淋巴管内皮细胞(LEC)伸长相关。在“失液”实验中,我们随后表明,抽吸间质液会减少 LEC 的长度,降低血管内皮生长因子受体 3(VEGFR3)的酪氨酸磷酸化,并抑制 LEC 的增殖。相反,在“加液”实验中,增加间质液的量会使 LEC 伸长,并增加 VEGFR3 的磷酸化和 LEC 的增殖。最后,我们提供了遗传证据,表明β1 整合素对于 LEC 对液体积累和细胞拉伸的增殖反应是必需的,因此对于淋巴管的扩张和液体的引流是必需的。因此,我们提出了一种新的、与生理相关的 VEGFR3 激活模式,它基于机械转导,对于哺乳动物胚胎的正常发育和液体动态平衡是必不可少的。

相似文献

1
Mechanoinduction of lymph vessel expansion.
EMBO J. 2012 Feb 15;31(4):788-804. doi: 10.1038/emboj.2011.456. Epub 2011 Dec 13.
2
Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth.
EMBO J. 2019 Jan 15;38(2). doi: 10.15252/embj.201899322. Epub 2018 Dec 5.
3
Mechanosensing in developing lymphatic vessels.
Adv Anat Embryol Cell Biol. 2014;214:23-40. doi: 10.1007/978-3-7091-1646-3_3.
4
The β-integrin plays a key role in LEC invasion in an optimized 3-D collagen matrix model.
Am J Physiol Cell Physiol. 2020 Dec 1;319(6):C1045-C1058. doi: 10.1152/ajpcell.00299.2020. Epub 2020 Oct 14.
7
Mechanical forces in lymphatic vascular development and disease.
Cell Mol Life Sci. 2013 Nov;70(22):4341-54. doi: 10.1007/s00018-013-1358-5. Epub 2013 May 12.
8
RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice.
J Clin Invest. 2012 Feb;122(2):733-47. doi: 10.1172/JCI46116. Epub 2012 Jan 9.
9
Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival.
Nature. 2018 Oct;562(7725):128-132. doi: 10.1038/s41586-018-0522-3. Epub 2018 Sep 26.

引用本文的文献

1
Zebrafish Models of Induced Lymphangiogenesis: Current Advancements and Therapeutic Discovery.
Pharmaceuticals (Basel). 2025 Jul 21;18(7):1076. doi: 10.3390/ph18071076.
2
Meningeal lymphatic drainage: novel insights into central nervous system disease.
Signal Transduct Target Ther. 2025 May 5;10(1):142. doi: 10.1038/s41392-025-02177-z.
3
Dynamic cytoskeletal regulation of cell shape supports resilience of lymphatic endothelium.
Nature. 2025 May;641(8062):465-475. doi: 10.1038/s41586-025-08724-6. Epub 2025 Mar 19.
4
Compensatory lymphangiogenesis is required for edema resolution in zebrafish.
Sci Rep. 2025 Mar 10;15(1):8177. doi: 10.1038/s41598-025-92970-1.
5
Regulation of VEGFR3 signaling in lymphatic endothelial cells.
Front Cell Dev Biol. 2025 Feb 13;13:1527971. doi: 10.3389/fcell.2025.1527971. eCollection 2025.
6
Same same but different? How blood and lymphatic vessels induce cell contact inhibition.
Biochem Soc Trans. 2025 Feb 6;53(1):BST20240573. doi: 10.1042/BST20240573.
7
Moving toward a better understanding of renal lymphatics: challenges and opportunities.
Pediatr Nephrol. 2025 Feb 3. doi: 10.1007/s00467-025-06692-7.
8
Cranial bone maneuver ameliorates Alzheimer's disease pathology via enhancing meningeal lymphatic drainage function.
Alzheimers Dement. 2025 Feb;21(2):e14518. doi: 10.1002/alz.14518. Epub 2025 Jan 30.
9
Understanding the Lymphatic System: Tissue-on-Chip Modeling.
Annu Rev Biomed Eng. 2025 May;27(1):73-100. doi: 10.1146/annurev-bioeng-110222-100246. Epub 2025 Jan 22.
10
Endothelial β1-integrins are necessary for microvascular function and glucose uptake.
Am J Physiol Endocrinol Metab. 2024 Dec 1;327(6):E746-E759. doi: 10.1152/ajpendo.00322.2024. Epub 2024 Oct 23.

本文引用的文献

1
Lymphatic vascular morphogenesis in development, physiology, and disease.
J Cell Biol. 2011 May 16;193(4):607-18. doi: 10.1083/jcb.201012094.
2
Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis.
Genes Dev. 2011 Apr 15;25(8):831-44. doi: 10.1101/gad.615311.
3
Nuclear mechanics during cell migration.
Curr Opin Cell Biol. 2011 Feb;23(1):55-64. doi: 10.1016/j.ceb.2010.10.015. Epub 2010 Nov 23.
4
Integrins and extracellular matrix in mechanotransduction.
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a005066. doi: 10.1101/cshperspect.a005066. Epub 2010 Nov 17.
5
Current views on the function of the lymphatic vasculature in health and disease.
Genes Dev. 2010 Oct 1;24(19):2115-26. doi: 10.1101/gad.1955910.
7
Preparation of hydrogel substrates with tunable mechanical properties.
Curr Protoc Cell Biol. 2010 Jun;Chapter 10:Unit 10.16. doi: 10.1002/0471143030.cb1016s47.
8
Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis.
Nature. 2010 May 27;465(7297):483-6. doi: 10.1038/nature09002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验