Suppr超能文献

利用基因嵌合体对果蝇幼虫外周感觉神经元树突和轴突进行形态学分析。

Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

作者信息

Karim M Rezaul, Moore Adrian W

机构信息

Disease Mechanism Research Core, RIKEN Brain Science Institute.

出版信息

J Vis Exp. 2011 Nov 7(57):e3111. doi: 10.3791/3111.

Abstract

Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).

摘要

神经系统的发育需要正确确定神经元的位置和身份,随后进行精确的、特定神经元类别的树突发育和轴突布线。最近,果蝇幼虫外周神经系统(PNS)中的树突分支(DA)感觉神经元已成为强大的遗传模型,可用于阐明神经元分化的一般机制和特定类别机制。DA感觉神经元主要有四类(I-IV)(1)。它们按照树突分支复杂性增加的顺序命名,并且在分化的遗传控制方面存在特定类别的差异(2-10)。DA感觉系统是研究树突形态控制背后分子机制的实用模型(11-13),原因如下:1)它可以利用果蝇中可用的强大遗传工具;2)DA神经元的树突分支仅在光学透明的幼虫表皮下方的二维空间中展开,便于在体内以高分辨率进行可视化;3)树突形态的特定类别多样性有助于进行比较分析,以找到控制简单与高度分支树突形成的关键要素;4)不同DA神经元的树突分支刻板形状便于进行形态计量统计分析。DA神经元的活动会改变幼虫运动中央模式发生器的输出(14-16)。不同类别的DA神经元具有不同的感觉模式,它们的激活会引发不同的行为反应(14,16-20)。此外,不同类别以刻板方式将轴突投射到果蝇幼虫腹神经索(VNC)的中枢神经系统中(21)。这些投射以DA神经元感觉模式以及树突场体壁位置的拓扑表示终止(7,22,23)。因此,对DA轴突投射的检查可用于阐明拓扑映射背后的机制(7,22,23),以及调节幼虫运动的简单电路的布线(14-17)。我们在此提供一份实用指南,介绍如何通过MARCM(可抑制细胞标记的镶嵌分析)(1,10,25)和Flp-out(22,26,27)技术生成和分析标记DA神经元的遗传镶嵌体(24)(总结于图1)。

相似文献

引用本文的文献

4
Microtubule nucleation and organization in dendrites.树突中的微管成核与组织
Cell Cycle. 2016 Jul 2;15(13):1685-92. doi: 10.1080/15384101.2016.1172158. Epub 2016 Apr 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验