Suppr超能文献

树突中的微管成核与组织

Microtubule nucleation and organization in dendrites.

作者信息

Delandre Caroline, Amikura Reiko, Moore Adrian W

机构信息

a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan.

出版信息

Cell Cycle. 2016 Jul 2;15(13):1685-92. doi: 10.1080/15384101.2016.1172158. Epub 2016 Apr 20.

Abstract

Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies.

摘要

树突分支是构建复杂神经系统的一个重要过程。它决定了输入到神经元中的信号数量、分布和整合方式,并受到调控以形成不同神经元类型所特有的多样树突分支模式。微管细胞骨架对于在树突分支过程中提供结构和施加力至关重要。它还支持树突的功能需求,这体现在不同神经元类型之间微管结构组织的差异上,这里以感觉神经元为例进行说明。在生长的树突中,正向和逆向微管聚合均会发生,并且最近的研究表明,新生分支中的正向微管聚合事件会增强分支。微管聚合事件的极性由树突分支中微管成核事件的位置和方向调控。高尔基体驻留是树突中的主要微管成核中心,并且与中心体共享共同的成核机制。此外,预先存在的树突微管可能充当成核位点。我们讨论了如何在生长的树突中平衡不同成核机制的活性以改变微管聚合极性和树突分支,以及如何调节这种平衡以产生特定神经元类型的形态。

相似文献

1
Microtubule nucleation and organization in dendrites.
Cell Cycle. 2016 Jul 2;15(13):1685-92. doi: 10.1080/15384101.2016.1172158. Epub 2016 Apr 20.
2
Centrosomin represses dendrite branching by orienting microtubule nucleation.
Nat Neurosci. 2015 Oct;18(10):1437-45. doi: 10.1038/nn.4099. Epub 2015 Aug 31.
5
Γ-tubulin controls neuronal microtubule polarity independently of Golgi outposts.
Mol Biol Cell. 2014 Jul 1;25(13):2039-50. doi: 10.1091/mbc.E13-09-0515. Epub 2014 May 7.
7
Dendrite arborization requires the dynein cofactor NudE.
J Cell Sci. 2015 Jun 1;128(11):2191-201. doi: 10.1242/jcs.170316. Epub 2015 Apr 23.
8
Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes.
Trends Cell Biol. 2020 Oct;30(10):792-804. doi: 10.1016/j.tcb.2020.07.004. Epub 2020 Aug 27.
9
Atypical Myosin Tunes Dendrite Arbor Subdivision.
Neuron. 2020 May 6;106(3):452-467.e8. doi: 10.1016/j.neuron.2020.02.002. Epub 2020 Mar 9.
10
FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons.
Dev Biol. 2016 Oct 1;418(1):40-54. doi: 10.1016/j.ydbio.2016.08.018. Epub 2016 Aug 18.

引用本文的文献

1
EML2 and EML4 splice variants regulate microtubule remodeling during neuronal cell differentiation.
J Biol Chem. 2025 May 19;301(6):110252. doi: 10.1016/j.jbc.2025.110252.
3
Augmin complex activity finetunes dendrite morphology through non-centrosomal microtubule nucleation in vivo.
J Cell Sci. 2024 May 1;137(9). doi: 10.1242/jcs.261512. Epub 2024 May 10.
6
An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation.
IBRO Neurosci Rep. 2022 Sep 15;13:264-273. doi: 10.1016/j.ibneur.2022.09.004. eCollection 2022 Dec.
7
Molecular architecture of the augmin complex.
Nat Commun. 2022 Sep 16;13(1):5449. doi: 10.1038/s41467-022-33227-7.
8
Spatial regulation of endosomes in growing dendrites.
Dev Biol. 2022 Jun;486:5-14. doi: 10.1016/j.ydbio.2022.03.004. Epub 2022 Mar 17.
10
Spatiotemporal changes in microtubule dynamics during dendritic morphogenesis.
Fly (Austin). 2022 Dec;16(1):13-23. doi: 10.1080/19336934.2021.1976033.

本文引用的文献

2
Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex.
Acta Histochem Cytochem. 2015 Oct 29;48(5):145-52. doi: 10.1267/ahc.15023. Epub 2015 Oct 21.
3
Nucleation and Dynamics of Golgi-derived Microtubules.
Front Neurosci. 2015 Nov 10;9:431. doi: 10.3389/fnins.2015.00431. eCollection 2015.
4
Development of dendritic form and function.
Annu Rev Cell Dev Biol. 2015;31:741-77. doi: 10.1146/annurev-cellbio-100913-013020. Epub 2015 Sep 29.
5
Centrosome function and assembly in animal cells.
Nat Rev Mol Cell Biol. 2015 Oct;16(10):611-24. doi: 10.1038/nrm4062. Epub 2015 Sep 16.
6
Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel.
Cell. 2015 Sep 10;162(6):1391-403. doi: 10.1016/j.cell.2015.08.024.
7
Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules.
Cell Rep. 2015 Sep 22;12(11):1723-30. doi: 10.1016/j.celrep.2015.08.017. Epub 2015 Sep 3.
8
Centrosomin represses dendrite branching by orienting microtubule nucleation.
Nat Neurosci. 2015 Oct;18(10):1437-45. doi: 10.1038/nn.4099. Epub 2015 Aug 31.
9
Microtubule nucleation at the centrosome and beyond.
Nat Cell Biol. 2015 Sep;17(9):1089-93. doi: 10.1038/ncb3220.
10
Building the Neuronal Microtubule Cytoskeleton.
Neuron. 2015 Aug 5;87(3):492-506. doi: 10.1016/j.neuron.2015.05.046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验