Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20485-90. doi: 10.1073/pnas.1117294108. Epub 2011 Dec 7.
The specificity of most aminoacyl-tRNA synthetases for an amino acid and cognate tRNA pair evolved before the divergence of the three domains of life. Glutaminyl-tRNA synthetase (GlnRS) evolved later and is derived from the archaeal-type nondiscriminating glutamyl-tRNA synthetase (GluRS), an enzyme with relaxed tRNA specificity capable of forming both Glu-tRNA(Glu) and Glu-tRNA(Gln). The archaea lack GlnRS and use a specialized amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) needed for protein synthesis. We show that the Methanothermobacter thermautotrophicus GluRS is active toward tRNA(Glu) and the two tRNA(Gln) isoacceptors the organism encodes, but with a significant catalytic preference for tRNA(Gln2)(CUG). The less active tRNA(Gln1)(UUG) responds to the less common CAA codon for Gln. From a biochemical characterization of M. thermautotrophicus GluRS variants, we found that the evolution of tRNA specificity in GlnRS could be recapitulated by converting the M. thermautotrophicus GluRS to a tRNA(Gln) specific enzyme, solely through the addition of an acceptor stem loop present in bacterial GlnRS. One designed GluRS variant is also highly specific for the tRNA(Gln2)(CUG) isoacceptor, which responds to the CAG codon, and shows no activity toward tRNA(Gln1)(UUG). Because it is now possible to eliminate particular codons from the genome of Escherichia coli, additional codons will become available for genetic code engineering. Isoacceptor-specific aminoacyl-tRNA synthetases will enable the reassignment of more open codons while preserving accurate encoding of the 20 canonical amino acids.
大多数氨酰-tRNA 合成酶对特定氨基酸和相应 tRNA 对的特异性是在生命的三个域分化之前进化而来的。谷氨酰-tRNA 合成酶 (GlnRS) 进化较晚,源自古菌型非特异性谷氨酰-tRNA 合成酶 (GluRS),这种酶对 tRNA 的特异性较宽松,能够形成 Glu-tRNA(Glu)和 Glu-tRNA(Gln)。古菌缺乏 GlnRS,而是使用一种特殊的氨酰转移酶将 Glu-tRNA(Gln)转化为合成蛋白质所需的 Gln-tRNA(Gln)。我们表明,产甲烷菌 Thermautotrophicus GluRS 对 tRNA(Glu)和该生物体编码的两种 tRNA(Gln)同工受体具有活性,但对 tRNA(Gln2)(CUG)具有显著的催化偏好。活性较低的 tRNA(Gln1)(UUG)响应较少见的 Gln 密码子 CAA。从对产甲烷菌 Thermautotrophicus GluRS 变体的生化特征分析中,我们发现 GlnRS 中 tRNA 特异性的进化可以通过将产甲烷菌 Thermautotrophicus GluRS 转化为仅对 tRNA(Gln)具有特异性的酶来实现,这仅通过添加细菌 GlnRS 中存在的受体茎环即可。一种设计的 GluRS 变体也对 tRNA(Gln2)(CUG)同工受体具有高度特异性,该受体对 CAG 密码子有反应,并且对 tRNA(Gln1)(UUG)没有活性。由于现在可以从大肠杆菌的基因组中消除特定的密码子,因此将有更多的密码子可供遗传密码工程使用。同工受体特异性氨酰-tRNA 合成酶将能够重新分配更多开放的密码子,同时保持 20 个标准氨基酸的准确编码。