Suppr超能文献

利用应答者的不确定性得分来减轻基于社区的健康保险研究中的假设偏差。

Using respondents' uncertainty scores to mitigate hypothetical bias in community-based health insurance studies.

机构信息

CREM, UMR CNRS 6211, University of Rennes I, Rennes, France.

出版信息

Eur J Health Econ. 2013 Apr;14(2):277-85. doi: 10.1007/s10198-011-0369-0. Epub 2011 Dec 10.

Abstract

Community-based health insurance has been implemented in several developing countries to help the poor to gain access to adequate health-care services. Assessing what the poor are willing to pay is of paramount importance for policymaking. The contingent valuation method, which relies on a hypothetical market, is commonly used for this purpose. But the presence of the hypothetical bias that is most often inherent in this method tends to bias the estimates upward and compromises policymaking. This paper uses respondents' uncertainty scores in an attempt to mitigate hypothetical bias in community-based health insurance in one rural setting in Cameroon. Uncertainty scores are often employed in single dichotomous choice surveys. An originality of the paper is to use such an approach in a double-bounded dichotomous choice survey. The results suggest that this instrument is effective at decreasing the mean WTP.

摘要

社区医疗保险已在多个发展中国家实施,以帮助穷人获得足够的医疗保健服务。评估穷人的支付意愿对于决策制定至关重要。为此,通常采用依赖于假设市场的条件价值评估方法。但是,这种方法通常存在假设偏差,这往往会导致估计值向上偏差,并影响决策制定。本文在喀麦隆的一个农村地区使用受访者的不确定性得分来尝试减轻社区医疗保险中的假设偏差。不确定性得分通常在单项二项选择调查中使用。本文的一个创新之处在于在双边界二项选择调查中使用这种方法。结果表明,这种工具在降低平均 WTP 方面非常有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验