Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
NMR Biomed. 2012 Jun;25(6):883-9. doi: 10.1002/nbm.1807. Epub 2011 Dec 9.
The application of (17)O MRI and MRS for the evaluation of cardiac mitochondrial function has been limited because of the challenge of detecting metabolic H(2)(17)O in the vast background of naturally abundant H(2)(17)O. In this study, we have developed a direct (17)O MRS approach to examine the feasibility and sensitivity of detecting metabolically produced H(2)(17)O in isolated rat hearts perfused with (17)O(2)-enriched Krebs-Henseleit buffer containing normal (1.5 mm) and high (2.5 mm) calcium (Ca(2+)) concentrations to induce high workload. Consistent with increased workload at high Ca(2+) concentration, the measured myocardial oxygen consumption rate (MVO(2)) increased by 82%. Dynamic (17)O MRS showed an accelerated increase in the H(2)(17)O signal at high Ca(2+) concentration, suggesting increased mitochondrial production of H(2)(17)O in concordance with the increased workload. A compartment model was developed to describe the kinetics of H(2)(17)O production as a function of MVO(2). The myocardial (17)O(2) consumption rate (MV(17)O(2) was determined by least-squares fitting of the model to the NMR-measured H(2)(17)O concentration. Consistent with the measured MVO(2), the model-determined MV(17)O(2) showed a 92% increase at high Ca(2+) concentration. The increase in metabolic activity at high workload allowed the balance between ATP production and utilization to be maintained, leading to a similar phosphocreatine to ATP ratio. These results demonstrate that dynamic (17)O MRS can provide a valuable tool for the detection of an altered metabolic rate associated with a change in cardiac workload.
(17)O MRI 和 MRS 技术在评估心脏线粒体功能中的应用受到限制,因为难以在大量天然存在的(17)H2O 背景下检测到代谢性 H(2)(17)O。在这项研究中,我们开发了一种直接的(17)O MRS 方法,以研究在含有正常(1.5mmol/L)和高(2.5mmol/L)钙(Ca(2+)浓度的(17)O2 饱和 Krebs-Henseleit 缓冲液灌注的分离大鼠心脏中检测代谢产生的 H(2)(17)O 的可行性和敏感性,以诱导高工作量。与高 Ca(2+)浓度下工作量增加一致,测量的心肌耗氧量(MVO(2))增加了 82%。动态(17)O MRS 显示在高 Ca(2+)浓度下 H(2)(17)O 信号加速增加,表明与增加的工作量一致,线粒体产生 H(2)(17)O 增加。建立了一个隔间模型来描述 H(2)(17)O 产生作为 MVO(2)函数的动力学。MV(17)O(2)通过对模型进行最小二乘拟合来确定 NMR 测量的 H(2)(17)O 浓度。与测量的 MVO(2)一致,模型确定的 MV(17)O(2)在高 Ca(2+)浓度下增加了 92%。高工作量下代谢活性的增加使得 ATP 产生和利用之间的平衡得以维持,导致磷酸肌酸与 ATP 的比值相似。这些结果表明,动态(17)O MRS 可以提供一种有价值的工具,用于检测与心脏工作量变化相关的代谢率变化。