Suppr超能文献

心脏 17O MRI:直接定量心肌耗氧量的方法。

Cardiac 17O MRI: toward direct quantification of myocardial oxygen consumption.

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Magn Reson Med. 2010 Jun;63(6):1442-7. doi: 10.1002/mrm.22382.

Abstract

A new (17)O-labeled blood contrast agent was injected intravenously in control dogs. Electrocardiogram (ECG)-triggered myocardial T(1)rho imaging was performed to obtain spin-locking T(1)rho-weighted myocardial signals for the detection of resultant metabolite H(2) (17)O water in the heart. Bolus and slow injection methods of various doses of the (17)O-labeled and (16)O-labeled agents were carried out in order to evaluate the sensitivity of this method and determine the optimal injection method. Bolus injection provided approximately 1% signal reduction, whereas slow injection with larger amount of agent yielded 11.9 +/- 0.6% signal reduction. Myocardial oxygen consumption rate was determined by a technique to quantify cerebral oxygenation consumption rate previously developed in (17)O brain studies. With either injection method, myocardial oxygen consumption rate at rest was 5.0 - 5.6 micromol/g/min. Therefore, it appears feasible to detect metabolically generated H(2) (17)O water in vivo in the heart, using the (17)O-labeled blood tracer. Myocardial oxygen consumption rate can then be quantified in vivo, which may open new doors for the assessment of myocardial metabolism.

摘要

静脉注射一种新型的 (17)O 标记血对比剂,对正常狗进行心电门控心肌 T(1)rho 成像,以获得自旋锁定 T(1)rho 加权心肌信号,检测心脏中代谢产生的 H(2) (17)O 水。为了评估该方法的灵敏度并确定最佳注射方法,进行了各种剂量的 (17)O 标记和 (16)O 标记剂的推注和缓慢注射。推注可使信号降低约 1%,而缓慢注射较大剂量的药物可使信号降低 11.9 +/- 0.6%。心肌耗氧量通过以前在 (17)O 脑研究中开发的定量脑氧耗量的技术来确定。两种注射方法均显示,休息时心肌耗氧量为 5.0-5.6 微摩尔/克/分钟。因此,使用 (17)O 标记的血示踪剂,似乎可以在体内检测到心脏中代谢产生的 H(2) (17)O 水。然后可以在体内定量心肌耗氧量,这可能为评估心肌代谢开辟新的途径。

相似文献

1
Cardiac 17O MRI: toward direct quantification of myocardial oxygen consumption.
Magn Reson Med. 2010 Jun;63(6):1442-7. doi: 10.1002/mrm.22382.
2
[Myocardial microcirculation in humans--new approaches using MRI].
Herz. 2003 Mar;28(2):74-81. doi: 10.1007/s00059-003-2451-6.
3
Quantification of global myocardial oxygenation in humans: initial experience.
J Cardiovasc Magn Reson. 2010 Jun 2;12(1):34. doi: 10.1186/1532-429X-12-34.
4
Quantification of regional myocardial oxygenation by magnetic resonance imaging: validation with positron emission tomography.
Circ Cardiovasc Imaging. 2010 Jan;3(1):41-6. doi: 10.1161/CIRCIMAGING.109.897546. Epub 2009 Nov 20.
5
In vitro and in vivo studies of 17O NMR sensitivity at 9.4 and 16.4 T.
Magn Reson Med. 2013 Jun;69(6):1523-7. doi: 10.1002/mrm.24386. Epub 2012 Jul 6.
6
Direct cerebral and cardiac 17O-MRI at 3 Tesla: initial results at natural abundance.
MAGMA. 2014 Feb;27(1):95-9. doi: 10.1007/s10334-013-0409-0.
7
Proton MRI of metabolically produced H2 17O using an efficient 17O2 delivery system.
Neuroimage. 2004 Jun;22(2):611-8. doi: 10.1016/j.neuroimage.2004.02.024.
8
In vivo 17O NMR approaches for brain study at high field.
NMR Biomed. 2005 Apr;18(2):83-103. doi: 10.1002/nbm.930.
9
Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine.
J Neurosci Methods. 2009 Apr 30;179(1):29-39. doi: 10.1016/j.jneumeth.2009.01.008. Epub 2009 Jan 20.
10
Indirect MRI of o-labeled water using steady-state sequences: Signal simulation and preclinical experiment.
J Magn Reson Imaging. 2018 May;47(5):1373-1379. doi: 10.1002/jmri.25848. Epub 2017 Aug 31.

引用本文的文献

1
Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies.
Magn Reson Lett. 2023 Jun 10;3(4):327-343. doi: 10.1016/j.mrl.2023.05.002. eCollection 2023 Nov.
3
Magnetic Resonance Water Tracer Imaging Using 17 O-Labeled Water.
Invest Radiol. 2024 Jan 1;59(1):92-103. doi: 10.1097/RLI.0000000000001021. Epub 2023 Sep 15.
5
Use of cardiac magnetic resonance to detect changes in metabolism in heart failure.
Cardiovasc Diagn Ther. 2020 Jun;10(3):583-597. doi: 10.21037/cdt.2019.12.13.
6
Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics.
Neurotherapeutics. 2020 Apr;17(2):522-538. doi: 10.1007/s13311-020-00843-4.
7
A non-contrast CMR index for assessing myocardial fibrosis.
Magn Reson Imaging. 2017 Oct;42:69-73. doi: 10.1016/j.mri.2017.04.012. Epub 2017 Apr 28.
9
New insights into rotating frame relaxation at high field.
NMR Biomed. 2016 Sep;29(9):1258-73. doi: 10.1002/nbm.3490. Epub 2016 Feb 11.
10
Large Animal Models of Ischemic Cardiomyopathy: Are They Enough to Bridge the Translational Gap?
J Nucl Cardiol. 2015 Aug;22(4):666-72. doi: 10.1007/s12350-015-0078-7.

本文引用的文献

1
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI.
J Magn Reson Imaging. 2008 Sep;28(3):744-54. doi: 10.1002/jmri.21444.
2
Feasibility study of myocardial perfusion and oxygenation by noncontrast MRI: comparison with PET study in a canine model.
Magn Reson Imaging. 2008 Jan;26(1):11-9. doi: 10.1016/j.mri.2007.04.009. Epub 2007 Jun 13.
3
Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections.
J Magn Reson. 2007 May;186(1):75-85. doi: 10.1016/j.jmr.2007.01.015. Epub 2007 Jan 26.
5
Proton MRI of metabolically produced H2 17O using an efficient 17O2 delivery system.
Neuroimage. 2004 Jun;22(2):611-8. doi: 10.1016/j.neuroimage.2004.02.024.
7
T1rho-weighted MRI using a surface coil to transmit spin-lock pulses.
J Magn Reson. 2004 Apr;167(2):306-16. doi: 10.1016/j.jmr.2004.01.007.
8
Myocardial density and composition: a basis for calculating intracellular metabolite concentrations.
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1742-9. doi: 10.1152/ajpheart.00478.2003. Epub 2003 Dec 23.
10
Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions.
Biochem Biophys Res Commun. 2001 Dec 14;289(4):813-8. doi: 10.1006/bbrc.2001.6058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验