Electronics Department, University of Alcalá, Campus Universitario s/n, 28805, Alcalá de Henares, Madrid, Spain.
Sensors (Basel). 2010;10(10):8865-87. doi: 10.3390/s101008865. Epub 2010 Sep 28.
This paper presents a novel system capable of solving the problem of tracking multiple targets in a crowded, complex and dynamic indoor environment, like those typical of mobile robot applications. The proposed solution is based on a stereo vision set in the acquisition step and a probabilistic algorithm in the obstacles position estimation process. The system obtains 3D position and speed information related to each object in the robot's environment; then it achieves a classification between building elements (ceiling, walls, columns and so on) and the rest of items in robot surroundings. All objects in robot surroundings, both dynamic and static, are considered to be obstacles but the structure of the environment itself. A combination of a Bayesian algorithm and a deterministic clustering process is used in order to obtain a multimodal representation of speed and position of detected obstacles. Performance of the final system has been tested against state of the art proposals; test results validate the authors' proposal. The designed algorithms and procedures provide a solution to those applications where similar multimodal data structures are found.
本文提出了一种新的系统,能够解决在拥挤、复杂和动态的室内环境(如移动机器人应用中的典型环境)中跟踪多个目标的问题。所提出的解决方案基于采集步骤中的立体视觉和障碍物位置估计过程中的概率算法。该系统获取与机器人环境中每个物体相关的 3D 位置和速度信息;然后实现对建筑元素(天花板、墙壁、柱子等)和机器人周围其他物品之间的分类。机器人周围的所有动态和静态物体都被视为障碍物,但不包括环境本身的结构。为了获得检测到的障碍物的速度和位置的多峰表示,使用了贝叶斯算法和确定性聚类过程的组合。最终系统的性能已经针对最先进的方案进行了测试;测试结果验证了作者的方案。所设计的算法和程序为那些发现类似多峰数据结构的应用提供了一种解决方案。