Suppr超能文献

基于现场可编程门阵列的智能架构,旨在使用主成分分析检测移动物体。

An intelligent architecture based on Field Programmable Gate Arrays designed to detect moving objects by using Principal Component Analysis.

机构信息

Electronics Department, University Alcala, Escuela Politecnica, Campus Universitario, Ctra. Madrid Barcelona km. 33.6 28871, Alcala de Henares, Madrid, Spain.

出版信息

Sensors (Basel). 2010;10(10):9232-51. doi: 10.3390/s101009232. Epub 2010 Oct 15.

Abstract

This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.

摘要

本文提出了一种在现场可编程门阵列(FPGA)设备中实现主成分分析(PCA)算法的完整方法,该算法应用于高帧率图像的背景分割。PCA 算法的不同部分的经典顺序执行已经被并行化。这种并行化导致了 PCA 的不同阶段的特定硬件开发和实现,例如相关矩阵的计算、使用雅可比方法对角化矩阵以及图像的子空间投影。在应用方面,本文提出了一种运动检测算法,该算法也完全在 FPGA 上实现,并基于开发的 PCA 核心。该算法包括动态地对输入图像与通过使用之前获得的 PCA 线性子空间来表示输入图像得到的图像之间的差异进行阈值处理,作为背景模型。该提案实现了高比例的处理图像(高达每秒 120 帧)和高质量的分割结果,具有完全嵌入式和可靠的硬件架构,基于商用 CMOS 传感器和 FPGA 设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e24c/3230973/08c1911be062/sensors-10-09232f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验