UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
Sensors (Basel). 2010;10(7):6439-62. doi: 10.3390/s100706439. Epub 2010 Jun 30.
In an ongoing programme to develop characterization strategies relevant to biosensors for in-vivo monitoring, glucose biosensors were fabricated by immobilizing the enzyme glucose oxidase (GOx) on 125 μm diameter Pt cylinder wire electrodes (Pt(C)), using three different methods: before, after or during the amperometric electrosynthesis of poly(ortho-phenylenediamine), PoPD, which also served as a permselective membrane. These electrodes were calibrated with H(2)O(2) (the biosensor enzyme signal molecule), glucose, and the archetypal interference compound ascorbic acid (AA) to determine the relevant polymer permeabilities and the apparent Michaelis-Menten parameters for glucose. A number of selectivity parameters were used to identify the most successful design in terms of the balance between substrate sensitivity and interference blocking. For biosensors electrosynthesized in neutral buffer under the present conditions, entrapment of the GOx within the PoPD layer produced the design (Pt(C)/PoPD-GOx) with the highest linear sensitivity to glucose (5.0 ± 0.4 μA cm(-2) mM(-1)), good linear range (K(M) = 16 ± 2 mM) and response time (< 2 s), and the greatest AA blocking (99.8% for 1 mM AA). Further optimization showed that fabrication of Pt(C)/PoPD-GOx in the absence of added background electrolyte (i.e., electropolymerization in unbuffered enzyme-monomer solution) enhanced glucose selectivity 3-fold for this one-pot fabrication protocol which provided AA-rejection levels at least equal to recent multi-step polymer bilayer biosensor designs. Interestingly, the presence of enzyme protein in the polymer layer had opposite effects on permselectivity for low and high concentrations of AA, emphasizing the value of studying the concentration dependence of interference effects which is rarely reported in the literature.
在一项旨在开发与活体监测用生物传感器相关的特性描述策略的持续计划中,通过将酶葡萄糖氧化酶 (GOx) 固定在 125μm 直径的 Pt 圆柱线电极 (Pt(C)) 上来制备葡萄糖生物传感器,使用了三种不同的方法:在聚邻苯二胺 (PoPD) 的安培电化学合成之前、之后或期间进行,PoPD 也用作选择性渗透膜。这些电极用 H(2)O(2)(生物传感器酶信号分子)、葡萄糖和典型干扰化合物抗坏血酸 (AA) 进行校准,以确定相关聚合物的渗透率和葡萄糖的表观米氏常数参数。使用了许多选择性参数来确定在基质敏感性和干扰阻断之间取得最佳平衡的最成功设计。对于在本条件下在中性缓冲液中电化学合成的生物传感器,将 GOx 包埋在 PoPD 层内产生了对葡萄糖具有最高线性灵敏度 (5.0±0.4 μA cm(-2) mM(-1))、良好线性范围 (K(M) = 16±2 mM) 和响应时间 (<2 s) 的设计 (Pt(C)/PoPD-GOx),并且 AA 阻断效果最好 (1 mM AA 时为 99.8%)。进一步的优化表明,在没有添加背景电解质的情况下制备 Pt(C)/PoPD-GOx(即在无缓冲酶单体溶液中进行电聚合)将这种一锅法制备方案的葡萄糖选择性提高了 3 倍,该方案提供的 AA 排斥水平至少与最近的多步聚合物双层生物传感器设计相当。有趣的是,酶蛋白在聚合物层中的存在对低浓度和高浓度 AA 的选择性渗透具有相反的影响,这强调了研究干扰效应浓度依赖性的价值,而这在文献中很少报道。