Colak Ozlem, Yaşar Ahmet, Cete Servet, Arslan Fatma
Department of Chemistry, Gazi University, Ankara, Turkey.
Artif Cells Blood Substit Immobil Biotechnol. 2012 Oct;40(5):354-61. doi: 10.3109/10731199.2012.678364. Epub 2012 Apr 30.
In this study, a novel amperometric glucose biosensor was developed by immobilizing glucose oxidase (GOX) by cross-linking via glutaraldehyde on electrochemically polymerized polypyrrole-poly(vinyl sulphonate) (PPy-PVS) films on the surface of a platinum (Pt) electrode. Electropolymerization of pyrrole and poly(vinyl sulphonate) on the Pt surface was carried out with an electrochemical cell containing pyrrole and poly(vinyl sulphonate) by cyclic voltammetry between -1.0 and + 2.0 V (vs.Ag/AgCl) at a scan rate of 50 mV/s upon the Pt electrode. The amperometric determination was based on the electrochemical detection of H(2)O(2) generated in enzymatic reaction of glucose. Determination of glucose was carried out by the oxidation of enzymatically produced H(2)O(2) at 0.4 V vs. Ag/AgCl. The effects of pH and temperature were investigated and optimum parameters were found to be 7.5 and 65°C, respectively. The effect of working potential was investigated and optimum potential was determined to be 0.4 V. The operational stability of the enzyme electrode was also studied. The response of the PPy/PVS-GOX glucose biosensor exhibited good reproducibility with a relative standard deviation (RSD) of 2.48%. The glucose biosensor retained 63% of initial activity after 93 days when stored in 0.1 M phosphate buffer solution of pH 7.5 at 4°C. With the low operating potential, the biosensor demonstrated little interference from the possible interferants.
在本研究中,通过戊二醛交联将葡萄糖氧化酶(GOX)固定在铂(Pt)电极表面的电化学聚合聚吡咯 - 聚(乙烯基磺酸盐)(PPy - PVS)薄膜上,开发了一种新型的安培型葡萄糖生物传感器。在Pt电极上,通过循环伏安法在含有吡咯和聚(乙烯基磺酸盐)的电化学池中,在-1.0至+ 2.0 V(相对于Ag/AgCl)之间以50 mV/s的扫描速率进行吡咯和聚(乙烯基磺酸盐)在Pt表面的电聚合。安培测定基于葡萄糖酶促反应中产生的H₂O₂的电化学检测。通过在相对于Ag/AgCl为0.4 V的电位下酶促产生的H₂O₂的氧化来测定葡萄糖。研究了pH和温度的影响,发现最佳参数分别为7.5和65°C。研究了工作电位的影响,确定最佳电位为0.4 V。还研究了酶电极的操作稳定性。PPy/PVS - GOX葡萄糖生物传感器的响应具有良好的重现性,相对标准偏差(RSD)为2.48%。当在4°C下于pH 7.5的0.1 M磷酸盐缓冲溶液中储存93天后,葡萄糖生物传感器保留了63%的初始活性。由于工作电位低,该生物传感器对可能的干扰物几乎没有干扰。