Centro de Ingeniería y Desarrollo Industrial, Av. Pie de la Cuesta No. 702, Desarrollo San Pablo, Querétaro, Mexico.
Sensors (Basel). 2010;10(8):7576-601. doi: 10.3390/s100807576. Epub 2010 Aug 11.
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.
本研究提出了一种用于建模交通流和检测交叉口异常车辆行为的无监督方法。在第一阶段,该方法揭示并记录了系统的不同状态。这些状态是对车辆历史运动进行编码和分组为长二进制字符串的结果。在第二阶段,使用记录的状态序列,基于马尔可夫方法构建了一个随机图模型。当当前运动模式无法识别为系统的任何状态,或者特定的状态序列无法用随机模型解析时,就将行为标记为异常。该方法使用从车辆交叉口获取的多组图像序列进行了测试,其中交通流量和与交通灯相关的持续时间在一天中不断变化。最后,该方法的低复杂度和灵活性使其可用于实时系统且具有可靠性。