Suppr超能文献

基于卡尔曼滤波的惯性/磁传感器姿态确定:可观性分析与性能评估。

Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56124 Pisa, Italy.

出版信息

Sensors (Basel). 2011;11(10):9182-206. doi: 10.3390/s111009182. Epub 2011 Sep 27.

Abstract

In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical.

摘要

本文提出了一种基于四元数的扩展卡尔曼滤波器(EKF),用于估计刚体的三维姿态。EKF 利用惯性测量单元(IMU)与三轴磁传感器集成的测量值。通过将其包含在滤波器状态向量中,对磁干扰和陀螺偏置误差进行建模和补偿。我们采用基于李导数的可观性秩准则来验证描述 IMU 进行运动跟踪过程的非线性系统是否可观的条件,即它可能为执行具有有界估计误差的估计任务提供足够的信息。可观性条件是,受一阶高斯-马尔可夫磁场变化干扰的磁场和重力矢量不共线,并且 IMU 受到一些角运动的影响。本文提出了计算机仿真和实验测试来评估算法性能,包括在可观性条件苛刻的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/768f/3231259/20de26c7a091/sensors-11-09182f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验