Baklouti Souha, Rezgui Taysir, Chaker Abdelbadia, Sahbani Anis, Bennour Sami
Mechanical Laboratory of Sousse (LMS), National School of Engineers of Sousse, University of Sousse, Sousse, Tunisia.
ENOVA Robotics S.A., Sousse, Tunisia.
Wearable Technol. 2025 Jun 30;6:e28. doi: 10.1017/wtc.2025.10003. eCollection 2025.
This study addresses challenges in sensor fusion for accurate and robust joint orientation estimation in human movement analysis using wearable inertial measurement units (IMUs). A magnetometer-free refined Kalman filter (KF) approach is presented and validated to address various indoor environmental constraints and challenges posed by human movement. These include variability in motion and dynamics, as well as magnetic disturbances caused by ferromagnetic materials or electronic interferences. Our proposed approach utilizes a Kalman-filter-based framework that analyzes the accelerometer's alignment with the Earth's frame to estimate orientation and correct gyroscope readings, eliminating reliance on magnetometer inputs. The algorithm was tested on both controlled robotic movements and real-world upper-limb-motion-monitoring scenarios. First, a comparative analysis was conducted on the double-stage Kalman filter (DSKF) and complementary filter using the collected robot motion encoder data. The results demonstrated superior performance in orientation estimation, particularly in yaw measurements, where the proposed method significantly improved accuracy. It achieved a lower root mean square error (RMSE = ) and mean absolute error (MAE = ), outperforming both the DSKF and complementary filter approaches. Additionally, the study's findings were validated against a standard motion capture system, revealing error metrics within generally acceptable ranges ( of the joint range of motion [ROM]) and strong correlation coefficients (). However, some deviations were observed during complex motion cycle intervals, highlighting opportunities for further refinement. These findings suggest that the proposed approach presents a promising alternative for human joint orientation estimation in industrial settings with magnetic distortions.
本研究探讨了在使用可穿戴惯性测量单元(IMU)进行人体运动分析时,用于准确且稳健的关节方向估计的传感器融合中的挑战。提出并验证了一种无磁强计的改进卡尔曼滤波器(KF)方法,以应对各种室内环境限制以及人体运动带来的挑战。这些挑战包括运动和动力学的变化,以及由铁磁材料或电子干扰引起的磁干扰。我们提出的方法利用基于卡尔曼滤波器的框架,该框架分析加速度计与地球坐标系的对齐情况,以估计方向并校正陀螺仪读数,从而消除了对磁强计输入的依赖。该算法在受控机器人运动和现实世界中的上肢运动监测场景中均进行了测试。首先,使用收集到的机器人运动编码器数据,对双阶段卡尔曼滤波器(DSKF)和互补滤波器进行了对比分析。结果表明,在方向估计方面,尤其是在偏航测量中,该方法具有卓越的性能,其显著提高了精度。它实现了更低的均方根误差(RMSE = )和平均绝对误差(MAE = ),优于DSKF和互补滤波器方法。此外,该研究的结果通过标准运动捕捉系统进行了验证,结果显示误差指标在通常可接受的范围内(运动范围[ROM]的 ),且相关系数很强( )。然而,在复杂运动周期间隔期间观察到了一些偏差,这突出了进一步改进的机会。这些发现表明,对于存在磁失真的工业环境中的人体关节方向估计,所提出的方法是一种很有前景的替代方案。