Department of Computer Science, Taizhou University, Taizhou 317000, China.
Sensors (Basel). 2011;11(10):9573-88. doi: 10.3390/s111009573. Epub 2011 Oct 11.
Facial expression recognition is an interesting and challenging subject. Considering the nonlinear manifold structure of facial images, a new kernel-based manifold learning method, called kernel discriminant isometric mapping (KDIsomap), is proposed. KDIsomap aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. KDIsomap is used to perform nonlinear dimensionality reduction on the extracted local binary patterns (LBP) facial features, and produce low-dimensional discrimimant embedded data representations with striking performance improvement on facial expression recognition tasks. The nearest neighbor classifier with the Euclidean metric is used for facial expression classification. Facial expression recognition experiments are performed on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database. Experimental results indicate that KDIsomap obtains the best accuracy of 81.59% on the JAFFE database, and 94.88% on the Cohn-Kanade database. KDIsomap outperforms the other used methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), kernel linear discriminant analysis (KLDA) as well as kernel isometric mapping (KIsomap).
面部表情识别是一个有趣且具有挑战性的课题。考虑到面部图像的非线性流形结构,提出了一种新的基于核的流形学习方法,称为核判别等距映射(KDIsomap)。KDIsomap 的目的是通过在再生核希尔伯特空间中最大化类间散布,同时最小化类内散布,来非线性地提取判别信息。KDIsomap 用于对面部特征提取的局部二值模式(LBP)进行非线性降维,并生成具有出色性能提升的低维判别嵌入数据表示,在面部表情识别任务中取得了显著的效果。使用欧几里得度量的最近邻分类器进行面部表情分类。在两个流行的面部表情数据库,即 JAFFE 数据库和 Cohn-Kanade 数据库上进行面部表情识别实验。实验结果表明,KDIsomap 在 JAFFE 数据库上获得了最佳的 81.59%的准确率,在 Cohn-Kanade 数据库上获得了 94.88%的准确率。KDIsomap 优于其他使用的方法,如主成分分析(PCA)、线性判别分析(LDA)、核主成分分析(KPCA)、核线性判别分析(KLDA)以及核等距映射(KIsomap)。