Suppr超能文献

面部表情动态:从面部轮廓图像序列中识别面部动作及其时间片段。

Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences.

作者信息

Pantic Maja, Patras Ioannis

机构信息

Delft University of Technology, Electrical Engineering, Mathematics and Computer Science, The Netherlands.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2006 Apr;36(2):433-49. doi: 10.1109/tsmcb.2005.859075.

Abstract

Automatic analysis of human facial expression is a challenging problem with many applications. Most of the existing automated systems for facial expression analysis attempt to recognize a few prototypic emotional expressions, such as anger and happiness. Instead of representing another approach to machine analysis of prototypic facial expressions of emotion, the method presented in this paper attempts to handle a large range of human facial behavior by recognizing facial muscle actions that produce expressions. Virtually all of the existing vision systems for facial muscle action detection deal only with frontal-view face images and cannot handle temporal dynamics of facial actions. In this paper, we present a system for automatic recognition of facial action units (AUs) and their temporal models from long, profile-view face image sequences. We exploit particle filtering to track 15 facial points in an input face-profile sequence, and we introduce facial-action-dynamics recognition from continuous video input using temporal rules. The algorithm performs both automatic segmentation of an input video into facial expressions pictured and recognition of temporal segments (i.e., onset, apex, offset) of 27 AUs occurring alone or in a combination in the input face-profile video. A recognition rate of 87% is achieved.

摘要

人类面部表情的自动分析是一个具有众多应用的挑战性问题。现有的大多数面部表情分析自动化系统试图识别几种典型的情感表情,如愤怒和快乐。本文提出的方法并非代表机器分析典型面部情感表情的另一种方法,而是试图通过识别产生表情的面部肌肉动作来处理广泛的人类面部行为。几乎所有现有的用于面部肌肉动作检测的视觉系统都只处理正视图面部图像,无法处理面部动作的时间动态。在本文中,我们提出了一种从长的侧面视图面部图像序列中自动识别面部动作单元(AU)及其时间模型的系统。我们利用粒子滤波在输入的面部侧面序列中跟踪15个面部点,并使用时间规则从连续视频输入中引入面部动作动态识别。该算法既对面部表情进行自动分割,又对输入面部侧面视频中单独出现或组合出现的27个AU的时间片段(即起始、顶点、结束)进行识别。识别率达到了87%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验