Suppr超能文献

基于 UbiFloorII 的步态模式进行用户识别。

User identification using gait patterns on UbiFloorII.

机构信息

U-embedded Convergence Research Center, Korea Electronics Technology Institute, 68 Yatap-dong Bundang-gu, Seongnam, Korea.

出版信息

Sensors (Basel). 2011;11(3):2611-39. doi: 10.3390/s110302611. Epub 2011 Mar 1.

Abstract

This paper presents a system of identifying individuals by their gait patterns. We take into account various distinguishable features that can be extracted from a user's gait and then divide them into two classes: walking pattern and stepping pattern. The conditions we assume are that our target environments are domestic areas, the number of users is smaller than 10, and all users ambulate with bare feet considering the everyday lifestyle of the Korean home. Under these conditions, we have developed a system that identifies individuals' gait patterns using our biometric sensor, UbiFloorII. We have created UbiFloorII to collect walking samples and created software modules to extract the user's gait pattern. To identify the users based on the gait patterns extracted from walking samples over UbiFloorII, we have deployed multilayer perceptron network, a feedforward artificial neural network model. The results show that both walking pattern and stepping pattern extracted from users' gait over the UbiFloorII are distinguishable enough to identify the users and that fusing two classifiers at the matching score level improves the recognition accuracy. Therefore, our proposed system may provide unobtrusive and automatic user identification methods in ubiquitous computing environments, particularly in domestic areas.

摘要

本文提出了一种通过步态模式识别个体的系统。我们考虑了可以从用户步态中提取的各种可区分的特征,然后将它们分为两类:行走模式和步幅模式。我们假设的条件是我们的目标环境是家庭区域,用户数量小于 10 人,并且所有用户都赤脚行走,考虑到韩国家庭的日常生活方式。在这些条件下,我们开发了一个使用我们的生物识别传感器 UbiFloorII 识别个体步态模式的系统。我们创建了 UbiFloorII 来收集行走样本,并创建了软件模块来提取用户的步态模式。为了根据从 UbiFloorII 上的行走样本中提取的步态模式识别用户,我们部署了多层感知器网络,这是一种前馈人工神经网络模型。结果表明,从 UbiFloorII 上用户步态中提取的行走模式和步幅模式足以区分用户,并且在匹配得分级别融合两个分类器可以提高识别准确性。因此,我们提出的系统可以在普适计算环境中,特别是在家庭环境中,提供非干扰和自动的用户识别方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c6/3231596/05989c4acbb0/sensors-11-02611f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验