Suppr超能文献

智能手机上增强安全性和隐私保护的步态认证。

Secure and privacy enhanced gait authentication on smart phone.

作者信息

Hoang Thang, Choi Deokjai

机构信息

Department of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea.

出版信息

ScientificWorldJournal. 2014;2014:438254. doi: 10.1155/2014/438254. Epub 2014 May 14.

Abstract

Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

摘要

移动技术发展所建立的智能环境给人类带来了巨大益处。然而,便携式智能设备上的认证机制,尤其是传统的基于生物特征的方法,仍然存在安全和隐私问题。这些传统系统大多基于模式识别和机器学习算法,在认证阶段,原始生物特征模板或提取的特征以未加密的形式存储,用于与新的生物特征样本进行匹配。在本文中,我们提出了一种使用生物特征密码系统的基于步态的新型认证方法,以增强智能手机上的系统安全性和用户隐私。提取的步态特征仅用于对作为认证因素的加密密钥进行生物特征加密。通过使用移动设备中的加速度计这一惯性传感器来获取步态信号,并采用纠错码来处理步态测量的自然变化。我们在一个由34名志愿者的步态样本组成的数据集上评估了我们提出的系统。在密钥长度为50位的情况下,我们分别实现了3.92%和11.76%的最低误识率(FAR)和拒识率(FRR)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e20/4052054/07a2d066ff1e/TSWJ2014-438254.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验