Suppr超能文献

利用以处理速度行驶的拖拉机获取的视频序列对宽行作物进行制图。

Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.

机构信息

Centre for Automation and Robotics, CSIC-UPM, Arganda del Rey, 28500 Madrid, Spain.

出版信息

Sensors (Basel). 2011;11(7):7095-109. doi: 10.3390/s110707095. Epub 2011 Jul 11.

Abstract

This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.

摘要

本文提出了一种针对宽行作物田的地图绘制方法。生成的地图显示了行内和行间的作物行和杂草。由于田间视频是通过安装在农业车辆顶部的相机获取的,因此需要设计和开发一种图像序列稳定化方法。所提出的稳定化方法使用图像序列中的一些作物行的中心作为要跟踪的特征,这些特征补偿了相机的横向运动(摆动),并保持俯仰角不变。使用跟踪的特征选择感兴趣区域,并使用反向透视技术将所选区域转换为以图像为中心的鸟瞰视图,从而能够生成地图。所开发的算法已经在不同时间和不同光照条件下记录的多个不同田地的视频序列上进行了测试,取得了良好的初步结果。实际上,通过稳定化过程抑制了高达行间距 66%的横向位移,并且生成的地图中的作物行看起来笔直。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0205/3231654/5ec93c916659/sensors-11-07095f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验