E.T.S. de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
PLoS One. 2018 Mar 7;13(3):e0191355. doi: 10.1371/journal.pone.0191355. eCollection 2018.
Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.
智能交通系统 (ITS) 使我们能够获得高质量的交通信息,从而降低潜在危急情况的风险。传统的基于图像的交通检测方法由于透视和背景噪声、光线和天气条件差等原因,难以获取良好的图像。在本文中,我们提出了一种新的方法来准确地分割和跟踪车辆。使用修正逆透视映射 (MIPM) 去除透视后,应用霍夫变换提取道路线和车道。然后,使用高斯混合模型 (GMM) 分割运动目标,并解决汽车阴影效应,我们应用基于色度的策略。最后,通过三个不同的视频基准进行性能评估:在马德里和德黑兰录制的自有视频(具有城市和城乡地区不同天气条件);以及两个著名的公共数据集(KITTI 和 DETRAC)。我们的结果表明,与其他方法相比,所提出的算法更稳健、更准确,尤其是在面对遮挡、光照变化和天气条件时。