Suppr超能文献

用于分析具有剂量修饰的不等间隔纵向数据的自回归线性混合效应模型。

An autoregressive linear mixed effects model for the analysis of unequally spaced longitudinal data with dose-modification.

机构信息

Department of Biostatistics, Vanderbilt University School of Medicine, 571 Preston Research Building, Nashville, TN37232-6848, USA.

出版信息

Stat Med. 2012 Mar 15;31(6):589-99. doi: 10.1002/sim.4456. Epub 2011 Dec 14.

Abstract

The assessment of the dose-response relationship is important but not straightforward when the therapeutic agent is administered repeatedly with dose-modification in each patient and a continuous response is measured repeatedly. We recently proposed an autoregressive linear mixed effects model for such data in which the current response is regressed on the previous response, fixed effects, and random effects. The model represents profiles approaching each patient's asymptote, takes into account the past dose history, and provides a dose-response relationship of the asymptote as a summary measure. In an autoregressive model, intermittent missing data mean the missing values in previous responses as covariates. We previously provided the marginal (unconditional on the previous response) form of the proposed model to deal with intermittent missing data. Irregular timings of dose-modification or measurement can also be treated as equally spaced data with intermittent missing values by selecting an adequately small unit of time. The likelihood is, however, expressed by matrices whose sizes depend on the number of observations for a patient, and the computational burden is large. In this study, we propose a state space form of the autoregressive linear mixed effects model to calculate the marginal likelihood without using large matrices. The regression coefficients of the fixed effects can be concentrated out of the likelihood in this model by the same way of a linear mixed effects model. As an illustration of the approach, we analyzed immunologic data from a clinical trial for multiple sclerosis patients and estimated the dose-response curves for each patient and the population mean.

摘要

当治疗剂在每个患者中进行剂量调整并多次给药,且连续测量反应时,评估剂量-反应关系非常重要,但并不简单。我们最近提出了一种适用于此类数据的自回归线性混合效应模型,其中当前反应与前一个反应、固定效应和随机效应进行回归。该模型代表了接近每个患者渐近线的轮廓,考虑了过去的剂量史,并提供了作为总结指标的渐近线的剂量-反应关系。在自回归模型中,间歇性缺失数据意味着以前反应作为协变量的缺失值。我们之前提供了所提出模型的边缘(与前一个反应条件独立)形式来处理间歇性缺失数据。剂量调整或测量的不规则时间也可以通过选择足够小的时间单位来处理具有间歇性缺失值的等间距数据。然而,可能性是通过取决于患者观察数量的矩阵来表示的,计算负担很大。在这项研究中,我们提出了自回归线性混合效应模型的状态空间形式,无需使用大型矩阵来计算边际似然。在该模型中,通过与线性混合效应模型相同的方式,可以将固定效应的回归系数集中在似然之外。作为该方法的说明,我们分析了多发性硬化症患者临床试验中的免疫数据,并为每个患者和人群平均值估计了剂量-反应曲线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验