Hund Lauren, Chen Jarvis T, Krieger Nancy, Coull Brent A
Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.
Biometrics. 2012 Sep;68(3):849-58. doi: 10.1111/j.1541-0420.2011.01721.x. Epub 2011 Dec 16.
Temporal boundary misalignment occurs when area boundaries shift across time (e.g., census tract boundaries change at each census year), complicating the modeling of temporal trends across space. Large area-level datasets with temporal boundary misalignment are becoming increasingly common in practice. The few existing approaches for temporally misaligned data do not account for correlation in spatial random effects over time. To overcome issues associated with temporal misalignment, we construct a geostatistical model for aggregate count data by assuming that an underlying continuous risk surface induces spatial correlation between areas. We implement the model within the framework of a generalized linear mixed model using radial basis splines. Using this approach, boundary misalignment becomes a nonissue. Additionally, this disease-mapping framework facilitates fast, easy model fitting by using a penalized quasilikelihood approximation to maximum likelihood estimation. We anticipate that the method will also be useful for large disease-mapping datasets for which fully Bayesian approaches are infeasible. We apply our method to assess socioeconomic trends in breast cancer incidence in Los Angeles between the periods 1988-1992 and 1998-2002.
当区域边界随时间发生变化(例如,每一个普查年份普查区边界都会改变)时,就会出现时间边界错位,这使得跨空间的时间趋势建模变得复杂。在实际应用中,存在时间边界错位的大面积数据集正变得越来越普遍。现有的几种处理时间错位数据的方法没有考虑到空间随机效应随时间的相关性。为了克服与时间错位相关的问题,我们通过假设一个潜在的连续风险曲面会在各区域间引发空间相关性,来构建一个针对总体计数数据的地理统计模型。我们在广义线性混合模型的框架内,使用径向基样条实现该模型。通过这种方法,边界错位就不再是问题。此外,这个疾病映射框架通过使用惩罚拟似然近似来进行最大似然估计,便于快速、轻松地进行模型拟合。我们预计该方法对于那些完全贝叶斯方法不可行的大型疾病映射数据集也将很有用。我们应用我们的方法来评估1988 - 1992年和1998 - 2002年期间洛杉矶乳腺癌发病率的社会经济趋势。