Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
Nano Lett. 2012 Jan 11;12(1):219-27. doi: 10.1021/nl203365y. Epub 2011 Dec 21.
We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications.
我们提出了一种新的表面增强拉曼光谱(SERS)基底设计方法,该方法基于通过一系列耦合的纳米级光学涡旋“固定”到合理设计的等离子体纳米结构来对光功率流进行造型,我们称之为涡旋纳米齿轮传输(VNT)。我们通过电子束光刻在石英衬底上制造了由 Au 纳米盘组成的 VNT,并通过计算电磁学、弹性和非弹性散射光谱的组合来表征它们的近场和远场响应。VNT 的远场散射光谱中的明显凹陷为在纳米结构内有效捕获和循环光提供了实验证据。此外,我们证明了 VNT 集成到 Au 纳米颗粒的周期性阵列中有利于在多个定义的波长下在 VNT 中产生高电场增强。我们表明,嵌套 VNT 结构中的光谱整形是通过由等离子体阵列中的相干多次散射驱动的电磁馈电机制实现的,并且可以通过调整阵列周期来合理控制该过程。在预定位置和频率下产生高电场增强的能力使嵌套 VNT 成为具有挑战性的 SERS 应用的有趣基底。