Bae Munseong, Jo Jaegang, Lee Myunghoo, Kang Joonho, Boriskina Svetlana V, Chung Haejun
Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
Nanophotonics. 2023 Oct 26;12(22):4239-4254. doi: 10.1515/nanoph-2023-0583. eCollection 2023 Nov.
Optical vortices (OVs) have rapidly varying spatial phase and optical energy that circulates around points or lines of zero optical intensity. Manipulation of OVs offers innovative approaches for various fields, such as optical sensing, communication, and imaging. In this work, we demonstrate the correlation between OVs and absorption enhancement in two types of structures. First, we introduce a simple planar one-dimensional (1D) structure that manipulates OVs using two coherent light sources. The structure shows a maximum of 6.05-fold absorption gap depending on the presence of OVs. Even a slight difference in the incidence angle can influence the generation/annihilation of OVs, which implies the high sensitivity of angular light detection. Second, we apply inverse design to optimize two-dimensional (2D) perfect ultrathin absorbers. The optimized free-form structure achieves 99.90 % absorptance, and the fabricable grating structure achieves 97.85 % at 775 nm wavelength. To evaluate OV fields and their contribution to achieving absorption enhancement, we introduce a new parameter, OV circularity. The optimized structures generate numerous OVs with a maximum circularity of 95.37 % (free-form) and 96.14 % (grating), superior to our 1D structure. Our study reveals the role of high-circularity localized OVs in optimizing nano-structured absorbers and devices for optical sensing, optical communication, and many other applications.
光学涡旋(OVs)具有快速变化的空间相位和围绕零光强的点或线循环的光能。对光学涡旋的操控为光学传感、通信和成像等各个领域提供了创新方法。在这项工作中,我们展示了两种结构中光学涡旋与吸收增强之间的相关性。首先,我们介绍一种简单的平面一维(1D)结构,该结构使用两个相干光源来操控光学涡旋。根据光学涡旋的存在情况,该结构显示出最大6.05倍的吸收间隙。即使入射角有微小差异也会影响光学涡旋的产生/湮灭,这意味着角向光检测具有高灵敏度。其次,我们应用逆向设计来优化二维(2D)完美超薄吸收体。优化后的自由形式结构在775nm波长处实现了99.90%的吸收率,可制造的光栅结构实现了97.85%的吸收率。为了评估光学涡旋场及其对实现吸收增强的贡献,我们引入了一个新参数——光学涡旋圆度。优化后的结构产生了大量光学涡旋,最大圆度分别为95.37%(自由形式)和96.14%(光栅),优于我们的一维结构。我们的研究揭示了高圆度局域光学涡旋在优化用于光学传感、光通信和许多其他应用的纳米结构吸收体及器件中的作用。