Boriskina Svetlana V, Reinhard Björn M
Department of Chemistry & The Photonics Center, Boston University, Boston, MA 02215, USA.
Opt Express. 2011 Oct 24;19(22):22305-15. doi: 10.1364/OE.19.022305.
A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strategy of re-configuring plasmonic nanocircuits via locally-addressable photonic elements opens the way to develop chip-integrated optoplasmonic switching architectures, which is crucial for implementation of quantum information nanocircuits.
作为量子信息处理的一项赋能技术,等离激元学面临的一个主要挑战是在纳米尺度上实现对光的主动时空控制。使用相位整形脉冲或光束对片上集成提出了特定要求,并带来了严格的设计限制。我们在此介绍一种替代方法,该方法基于利用集成到等离激元纳米电路中的共振激发高Q光学微腔近场中的强亚波长空间相位调制。我们的理论分析揭示了在光学微腔近场中形成的循环功率流区域(光学涡旋),其位置和相互耦合可以通过调整微腔参数和激发波长来控制。我们表明,通过设计微腔诱导的光学涡旋与贵金属纳米颗粒之间的相互作用,可以动态塑造通过纳米尺度等离激元结构的光功率流。所提出的通过局部可寻址光子元件重新配置等离激元纳米电路的策略,为开发芯片集成光等离激元开关架构开辟了道路,这对于量子信息纳米电路的实现至关重要。