Suppr超能文献

肌球蛋白马达如何为细胞功能提供动力:从结构到功能的令人兴奋的旅程:基于 2009 年 7 月在捷克布拉格举行的第 34 届 FEBS 大会上的一次演讲。

How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009.

机构信息

Structural Motility, Institut Curie CNRS, Paris, France.

出版信息

FEBS J. 2012 Feb;279(4):551-62. doi: 10.1111/j.1742-4658.2011.08449.x. Epub 2012 Jan 9.

Abstract

Molecular motors such as myosins are allosteric enzymes that power essential motility functions in the cell. Structural biology is an important tool for deciphering how these motors work. Myosins produce force upon the actin-driven conformational changes controlling the sequential release of the hydrolysis products of ATP (Pi followed by ADP). These conformational changes are amplified by a 'lever arm', which includes the region of the motor known as the converter and the adjacent elongated light chain binding region. Analysis of four structural states of the motor provides a detailed understanding of the rearrangements and pathways of communication in the motor that are necessary for detachment from the actin track and repriming of the motor. However, the important part of the cycle in which force is produced remains enigmatic and awaits new high-resolution structures. The value of a structural approach is particularly evident from clues provided by the structural states of the reverse myosin VI motor. Crystallographic structures have revealed that rearrangements within the converter subdomain occur, which explains why this myosin can produce a large stroke in the opposite direction to all other myosins, despite a very short lever arm. By providing a detailed understanding of the motor rearrangements, structural biology will continue to reveal essential information and help solve current enigma, such as how actin promotes force production, how motors are tuned for specific cellular roles or how motor/cargo interactions regulate the function of myosin in the cell.

摘要

分子马达(如肌球蛋白)是变构酶,它们为细胞中的基本运动功能提供动力。结构生物学是破译这些马达如何工作的重要工具。肌球蛋白在肌动蛋白驱动的构象变化中产生力,控制 ATP(Pi 随后是 ADP)水解产物的顺序释放。这些构象变化通过“杠杆臂”放大,其中包括马达的转换器区域和相邻的伸长轻链结合区域。对马达的四个结构状态的分析提供了对马达中分离肌动蛋白轨道和重新启动马达所需的重排和通讯途径的详细理解。然而,力产生的循环的重要部分仍然是神秘的,需要新的高分辨率结构。结构方法的价值特别明显,从反向肌球蛋白 VI 马达的结构状态提供的线索可以看出。晶体学结构揭示了转换器亚域内发生的重排,这解释了为什么尽管杠杆臂非常短,但这种肌球蛋白可以向与所有其他肌球蛋白相反的方向产生大冲程。通过提供对马达重排的详细理解,结构生物学将继续揭示基本信息,并帮助解决当前的谜题,例如肌动蛋白如何促进力的产生,马达如何针对特定的细胞作用进行调整,或者马达/货物相互作用如何调节肌球蛋白在细胞中的功能。

相似文献

8
Structural mechanism of the recovery stroke in the myosin molecular motor.肌球蛋白分子马达恢复冲程的结构机制。
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6873-8. doi: 10.1073/pnas.0408784102. Epub 2005 Apr 29.
9
Electrostatic origin of the unidirectionality of walking myosin V motors.静电起源于行走肌球蛋白 V 电机的单向性。
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17326-31. doi: 10.1073/pnas.1317641110. Epub 2013 Oct 8.

本文引用的文献

1
Principles of unconventional myosin function and targeting.非常规肌球蛋白功能和靶向原理。
Annu Rev Cell Dev Biol. 2011;27:133-55. doi: 10.1146/annurev-cellbio-100809-151502. Epub 2011 May 31.
7
The actin-myosin interface.肌动球蛋白界面。
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12529-34. doi: 10.1073/pnas.1003604107. Epub 2010 Jun 24.
8
Unconventional processive mechanics of non-muscle myosin IIB.非肌球蛋白 IIB 的非常规的延伸力学性质。
J Biol Chem. 2010 Aug 20;285(34):26326-34. doi: 10.1074/jbc.M110.123851. Epub 2010 May 29.
10
Leveraging the membrane - cytoskeleton interface with myosin-1.利用肌球蛋白-1与细胞膜-细胞骨架界面。
Trends Cell Biol. 2010 Jul;20(7):418-26. doi: 10.1016/j.tcb.2010.04.004. Epub 2010 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验