Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, Illinois.
Biophys J. 2013 Oct 1;105(7):1624-34. doi: 10.1016/j.bpj.2013.08.023.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.
肌动蛋白和肌球蛋白相互作用,执行各种细胞功能。理解肌球蛋白在肌动蛋白上的进行性运动的核心是对机械化学循环中各个状态的特征描述。我们呈现了肌球蛋白 II S1 结构域在僵硬状态下与肌动蛋白丝相互作用的全原子分子动力学模拟。我们还研究了无肌动蛋白的肌球蛋白在僵硬和后僵硬构象中的情况。使用全原子水平和粗粒化分析方法,我们研究了肌球蛋白结合对肌动蛋白的影响,以及肌动蛋白结合对肌球蛋白的影响。特别是,我们使用高度粗粒化的分辨率确定了肌球蛋白和肌动蛋白之间相互作用强烈的肌球蛋白和肌动蛋白的结构域,并在肌球蛋白和肌动蛋白的界面处确定了一些盐桥和氢键。通过粗粒化分析,我们确定了依赖于肌动蛋白结合或 ATP 结合的肌球蛋白状态的差异。我们的模拟还表明,肌球蛋白在肌球蛋白和肌动蛋白界面上影响肌动蛋白的推进器扭转角和核苷酸裂缝角度。还计算了肌球蛋白结合的纤维的扭转刚度,并发现与自由纤维的先前模拟相比,其增加了。