Suppr超能文献

自愿改变步长或步宽会影响人体行走的动态稳定性。

Voluntarily changing step length or step width affects dynamic stability of human walking.

机构信息

Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.

出版信息

Gait Posture. 2012 Mar;35(3):472-7. doi: 10.1016/j.gaitpost.2011.11.010. Epub 2011 Dec 15.

Abstract

Changes in step width (SW), step length (SL), and/or the variability of these parameters have been prospectively related to risk of falling. However, it is unknown how voluntary changes in SW and SL directly alter variability and/or dynamic stability of walking. Here, we quantified how variability and dynamic stability of human walking changed when individuals voluntarily manipulated SW and SL. 14 unimpaired, young adults walked on a treadmill at their preferred walking speed with normal gait, with a metronome and with narrower, wider, shorter and longer steps than normal. Taking narrower steps caused increased SL variability while mediolateral (ML) movements of the C7 vertebra (i.e., trunk) became locally more stable (p<0.05) and anterior-posterior (AP) C7 movements became locally less stable (p<0.05). Taking wider steps caused increased SW and SL variability, while ML C7 movements became both locally and orbitally less stable (p<0.05). Any change in SL caused increased SW, SL, and stride time variability. When taking shorter steps, ML C7 movements exhibited greater short-term local and orbital instability, while AP C7 movements exhibited decreased short-term and long-term local instability (p<0.05). When taking longer steps, AP, ML, and vertical C7 movements all exhibited increased long-term local instability and increased orbital instability (p<0.05). Correlations between mean SW, SL and dynamic stability of C7 marker motions were weak. However, short-term voluntary changes in SW and SL did significantly alter local and orbital stability of trunk motions.

摘要

步宽(SW)、步长(SL)的变化,以及这些参数的可变性已被前瞻性地与跌倒风险相关联。然而,目前尚不清楚SW 和 SL 的自愿变化如何直接改变行走的可变性和/或动态稳定性。在这里,我们量化了当个体自愿操纵 SW 和 SL 时,人类行走的可变性和动态稳定性如何变化。14 名未受损的年轻成年人以正常步态、节拍器和比正常更窄、更宽、更短和更长的步幅在跑步机上行走,以他们喜欢的步行速度行走。采取更窄的步幅会导致 SL 可变性增加,而 C7 椎骨(即躯干)的横向(ML)运动变得局部更稳定(p<0.05),而前后(AP)C7 运动变得局部不稳定(p<0.05)。采取更宽的步幅会导致 SW 和 SL 可变性增加,而 ML C7 运动变得局部和轨道不稳定(p<0.05)。SL 的任何变化都会导致 SW、SL 和步长时间的可变性增加。当采取更短的步幅时,ML C7 运动表现出更大的短期局部和轨道不稳定性,而 AP C7 运动表现出短期和长期局部不稳定性降低(p<0.05)。当采取更长的步幅时,AP、ML 和垂直 C7 运动都表现出长期局部不稳定性增加和轨道不稳定性增加(p<0.05)。C7 标记运动的平均 SW、SL 和动态稳定性之间的相关性较弱。然而,SW 和 SL 的短期自愿变化确实显著改变了躯干运动的局部和轨道稳定性。

相似文献

1
Voluntarily changing step length or step width affects dynamic stability of human walking.
Gait Posture. 2012 Mar;35(3):472-7. doi: 10.1016/j.gaitpost.2011.11.010. Epub 2011 Dec 15.
2
Voluntary changes in step width and step length during human walking affect dynamic margins of stability.
Gait Posture. 2012 Jun;36(2):219-24. doi: 10.1016/j.gaitpost.2012.02.020. Epub 2012 Apr 1.
3
Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking.
Gait Posture. 2010 Jul;32(3):348-53. doi: 10.1016/j.gaitpost.2010.06.004.
4
Effects of triceps surae fatigue and weight training level on gait variability and local stability in young adults.
Med Biol Eng Comput. 2020 Aug;58(8):1791-1802. doi: 10.1007/s11517-020-02196-8. Epub 2020 Jun 5.
7
Gait initiation: the first four steps in adults aged 20-25 years, 65-79 years, and 80-91 years.
Gait Posture. 2014;39(1):490-4. doi: 10.1016/j.gaitpost.2013.08.037. Epub 2013 Sep 8.
8
Dynamic instability during post-stroke hemiparetic walking.
Gait Posture. 2014 Jul;40(3):457-63. doi: 10.1016/j.gaitpost.2014.05.014. Epub 2014 Jun 4.
9
Energetic cost of walking with increased step variability.
Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.
10
Effect of age on the ability to recover from a single unexpected underfoot perturbation during gait: kinematic responses.
Gait Posture. 2013 Sep;38(4):853-7. doi: 10.1016/j.gaitpost.2013.04.013. Epub 2013 May 13.

引用本文的文献

3
Effects of step width and gait speed on the variability of mediolateral control in the head and trunk during gait.
PLoS One. 2025 Apr 21;20(4):e0320652. doi: 10.1371/journal.pone.0320652. eCollection 2025.
6
The Biomechanical Influence of Step Width on Typical Locomotor Activities: A Systematic Review.
Sports Med Open. 2024 Jul 27;10(1):83. doi: 10.1186/s40798-024-00750-4.
7
Direct biomechanical manipulation of human gait stability: A systematic review.
PLoS One. 2024 Jul 11;19(7):e0305564. doi: 10.1371/journal.pone.0305564. eCollection 2024.
8
Development of artificial intelligence edge computing based wearable device for fall detection and prevention of elderly people.
Heliyon. 2024 Apr 9;10(8):e28688. doi: 10.1016/j.heliyon.2024.e28688. eCollection 2024 Apr 30.
9
Design and Performance Analysis of a Mecanum-Built Perturbation-Based Balance Training Device.
Appl Bionics Biomech. 2024 Mar 29;2024:3622556. doi: 10.1155/2024/3622556. eCollection 2024.
10
Assessing the impact of gait speed on gait stability using multi-scale entropy fused with plantar pressure signals.
Front Bioeng Biotechnol. 2024 Feb 28;12:1328996. doi: 10.3389/fbioe.2024.1328996. eCollection 2024.

本文引用的文献

1
Stride dynamics, gait variability and prospective falls risk in active community dwelling older women.
Gait Posture. 2011 Feb;33(2):251-5. doi: 10.1016/j.gaitpost.2010.11.014. Epub 2010 Dec 16.
2
Dynamic stability of human walking in visually and mechanically destabilizing environments.
J Biomech. 2011 Feb 24;44(4):644-9. doi: 10.1016/j.jbiomech.2010.11.007. Epub 2010 Nov 20.
3
Walking variability during continuous pseudo-random oscillations of the support surface and visual field.
J Biomech. 2010 May 28;43(8):1470-5. doi: 10.1016/j.jbiomech.2010.02.003. Epub 2010 Mar 26.
4
Is slow walking more stable?
J Biomech. 2009 Jul 22;42(10):1506-1512. doi: 10.1016/j.jbiomech.2009.03.047. Epub 2009 May 15.
5
Quantitative gait markers and incident fall risk in older adults.
J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):896-901. doi: 10.1093/gerona/glp033. Epub 2009 Apr 6.
6
Statistical precision and sensitivity of measures of dynamic gait stability.
J Neurosci Methods. 2009 Apr 15;178(2):327-33. doi: 10.1016/j.jneumeth.2008.12.015. Epub 2008 Dec 24.
7
Dynamic stability of passive dynamic walking on an irregular surface.
J Biomech Eng. 2007 Dec;129(6):802-10. doi: 10.1115/1.2800760.
8
The effect of lateral stabilization on walking in young and old adults.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1919-26. doi: 10.1109/TBME.2007.901031.
9
Separating the effects of age and walking speed on gait variability.
Gait Posture. 2008 May;27(4):572-7. doi: 10.1016/j.gaitpost.2007.07.009. Epub 2007 Sep 4.
10
Dynamic stability differences in fall-prone and healthy adults.
J Electromyogr Kinesiol. 2008 Apr;18(2):172-8. doi: 10.1016/j.jelekin.2007.06.008. Epub 2007 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验