Suppr超能文献

步幅变异性增加时行走的能量消耗。

Energetic cost of walking with increased step variability.

机构信息

Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.

Abstract

Step-by-step variations occur during normal human walking, induced in part by imperfect sensorimotor control and naturally occurring random perturbations. These effects might increase energy expenditure during walking, because they differ from the nominal preferred gait, which is typically the most economical, and because of the cost of making active feedback adjustments to maintain gait stability. We tested this hypothesis by artificially inducing greater step variability through visual perturbations from a virtual reality display, and measuring the effect on energy expenditure. Young healthy adult subjects (N=11) walked on a treadmill while viewing a virtual hallway, to which virtual perturbations were applied in fore-aft or medio-lateral directions. The greatest effect on gait was achieved with medio-lateral visual perturbations, which resulted in a 65% increase in step width variability and a 5.9% increase (both P<0.05) in net metabolic rate compared to walking without perturbations. Perturbations generally induced greater variability in both step width and (to a lesser degree) step length, and also induced slightly wider and (to a lesser degree) shorter mean steps. Each of these measures was found to correlate significantly with each other, regardless of perturbation direction and magnitude. They also correlated with metabolic rate (P<0.05 for each separate measure), despite explaining only a modest proportion of overall energetic variations (R(2)<0.40). Step variability increases with some gait disorders and with increasing age. Our results suggest that imperfect sensorimotor control may contribute to the increased metabolic cost of walking observed with such conditions.

摘要

在人类正常行走过程中,会逐渐出现一些变化,这些变化部分是由于感觉运动控制不完美和自然发生的随机干扰引起的。这些影响可能会增加行走时的能量消耗,因为它们与名义上的首选步态不同,首选步态通常是最经济的,而且因为需要主动进行反馈调整以保持步态稳定会产生成本。我们通过从虚拟现实显示器中引入视觉干扰来人为地增加步幅变化,并测量其对能量消耗的影响,从而验证了这一假设。11 名健康的年轻成年受试者在跑步机上行走,同时观看一个虚拟的走廊,向该走廊的前后或左右方向施加虚拟干扰。与没有干扰的行走相比,左右方向的视觉干扰对步态的影响最大,导致步幅宽度的变异性增加了 65%,净代谢率增加了 5.9%(均 P<0.05)。与没有干扰的行走相比,干扰通常会导致步幅宽度和(在较小程度上)步长的更大变化,并导致更宽和(在较小程度上)更短的平均步幅。这些措施中的每一个都与其他措施显著相关,无论干扰的方向和幅度如何。它们与代谢率也相关(每个单独措施的 P<0.05),尽管它们只解释了总能量变化的适度比例(R(2)<0.40)。步幅变异性会随着一些步态障碍和年龄的增长而增加。我们的结果表明,感觉运动控制不完美可能导致这些情况下观察到的行走代谢成本增加。

相似文献

1
Energetic cost of walking with increased step variability.
Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.
2
The metabolic cost of walking balance control and adaptation in young adults.
Gait Posture. 2022 Jul;96:190-194. doi: 10.1016/j.gaitpost.2022.05.031. Epub 2022 May 28.
3
The effect of lateral stabilization on walking in young and old adults.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1919-26. doi: 10.1109/TBME.2007.901031.
4
Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
PLoS One. 2020 Mar 10;15(3):e0230202. doi: 10.1371/journal.pone.0230202. eCollection 2020.
5
Direction-dependent control of balance during walking and standing.
J Neurophysiol. 2009 Sep;102(3):1411-9. doi: 10.1152/jn.00131.2009. Epub 2009 Jun 24.
8
Gait stability in virtual reality: effects of VR display modality in the presence of visual perturbations.
J Neuroeng Rehabil. 2025 Feb 21;22(1):32. doi: 10.1186/s12984-025-01558-3.
9
Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
Gait Posture. 2021 May;86:94-100. doi: 10.1016/j.gaitpost.2021.03.014. Epub 2021 Mar 8.
10
Voluntarily changing step length or step width affects dynamic stability of human walking.
Gait Posture. 2012 Mar;35(3):472-7. doi: 10.1016/j.gaitpost.2011.11.010. Epub 2011 Dec 15.

引用本文的文献

1
The influence of dual-task activities on spatiotemporal gait parameters in patients with cardiovascular diseases.
JRSM Cardiovasc Dis. 2025 Jun 25;14:20480040251351403. doi: 10.1177/20480040251351403. eCollection 2025 Jan-Dec.
2
The effects of loose, firm, fine, and coarse substrates on the movement of the red flour beetle.
Insect Sci. 2025 Apr;32(2):662-674. doi: 10.1111/1744-7917.13406. Epub 2024 Jun 22.
4
Walking with increased step length variability increases the metabolic cost of walking in young adults.
J Exp Biol. 2025 Apr 15;228(8). doi: 10.1242/jeb.250126. Epub 2025 Apr 24.
5
Gait stability in virtual reality: effects of VR display modality in the presence of visual perturbations.
J Neuroeng Rehabil. 2025 Feb 21;22(1):32. doi: 10.1186/s12984-025-01558-3.
7
Rhythmic categories in horse gait kinematics.
J Anat. 2025 Mar;246(3):456-465. doi: 10.1111/joa.14200. Epub 2025 Jan 15.
8
Analysis of foothold selection during locomotion using terrain reconstruction.
Elife. 2024 Dec 9;12:RP91243. doi: 10.7554/eLife.91243.
9
Walking with increased step length variability increases the metabolic cost of walking.
bioRxiv. 2024 Jun 2:2024.05.28.596299. doi: 10.1101/2024.05.28.596299.
10
Forest terrains influence walking kinematics among indigenous Tsimane of the Bolivian Amazon.
Evol Hum Sci. 2022 Apr 22;4:e19. doi: 10.1017/ehs.2022.13. eCollection 2022.

本文引用的文献

1
Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults.
Gait Posture. 2010 Apr;31(4):461-4. doi: 10.1016/j.gaitpost.2010.02.001. Epub 2010 Feb 24.
2
Measures of frontal plane stability during treadmill and overground walking.
Gait Posture. 2010 Mar;31(3):380-4. doi: 10.1016/j.gaitpost.2010.01.002. Epub 2010 Feb 2.
3
Direction-dependent control of balance during walking and standing.
J Neurophysiol. 2009 Sep;102(3):1411-9. doi: 10.1152/jn.00131.2009. Epub 2009 Jun 24.
4
Effects of aging and arm swing on the metabolic cost of stability in human walking.
J Biomech. 2008 Dec 5;41(16):3303-8. doi: 10.1016/j.jbiomech.2008.06.039. Epub 2008 Sep 23.
5
A simple method for calibrating force plates and force treadmills using an instrumented pole.
Gait Posture. 2009 Jan;29(1):59-64. doi: 10.1016/j.gaitpost.2008.06.010. Epub 2008 Aug 27.
6
The effect of lateral stabilization on walking in young and old adults.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1919-26. doi: 10.1109/TBME.2007.901031.
7
Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy.
J Pediatr Orthop. 2007 Sep;27(6):643-7. doi: 10.1097/BPO.0b013e318093f4c3.
8
Gait coordination after stroke: benefits of acoustically paced treadmill walking.
Phys Ther. 2007 Aug;87(8):1009-22. doi: 10.2522/ptj.20050394. Epub 2007 Jun 6.
9
Individual limb work does not explain the greater metabolic cost of walking in elderly adults.
J Appl Physiol (1985). 2007 Jun;102(6):2266-73. doi: 10.1152/japplphysiol.00583.2006. Epub 2007 Mar 15.
10
Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
Gait Posture. 2007 Feb;25(2):250-8. doi: 10.1016/j.gaitpost.2006.04.013. Epub 2006 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验