IRSN/DEI/SECRE/LRC - Institut de Radioprotection et de Sûreté Nucléaire, Direction de l'Environnement et de l'Intervention, Laboratoire de Radioécologie de Cherbourg, Octeville, rue Max Pol Fouchet, B.P. 10, 50130 Cherbourg-Octeville, France.
J Environ Radioact. 2012 Dec;114:2-9. doi: 10.1016/j.jenvrad.2011.11.015. Epub 2011 Dec 14.
Contamination of the marine environment following the accident in the Fukushima Dai-ichi nuclear power plant represented the most important artificial radioactive release flux into the sea ever known. The radioactive marine pollution came from atmospheric fallout onto the ocean, direct release of contaminated water from the plant and transport of radioactive pollution from leaching through contaminated soil. In the immediate vicinity of the plant (less than 500 m), the seawater concentrations reached 68,000 Bq.L(-1) for (134)Cs and (137)Cs, and exceeded 100,000 Bq.L(-1) for (131)I in early April. Due to the accidental context of the releases, it is difficult to estimate the total amount of radionuclides introduced into seawater from data obtained in the plant. An evaluation is proposed here, based on measurements performed in seawater for monitoring purposes. Quantities of (137)Cs in seawater in a 50-km area around the plant were calculated from interpolation of seawater measurements. The environmental halftime of seawater in this area is deduced from the time-evolution of these quantities. This halftime appeared constant at about 7 days for (137)Cs. These data allowed estimation of the amount of principal marine inputs and their evolution in time: a total of 27 PBq (12 PBq-41 PBq) of (137)Cs was estimated up to July 18. Even though this main release may be followed by residual inputs from the plant, river runoff and leakage from deposited sediments, it represents the principal source-term that must be accounted for future studies of the consequences of the accident on marine systems. The (137)Cs from Fukushima will remain detectable for several years throughout the North Pacific, and (137)Cs/(134)Cs ratio will be a tracer for future studies.
福岛第一核电站事故后,海洋环境受到污染,这是有记录以来最重要的一次人为放射性物质向海洋释放。放射性海洋污染来自大气沉降到海洋、核电站直接排放受污染的水以及受污染土壤淋滤导致放射性污染的迁移。在核电站附近(小于 500 米),海水浓度在 4 月初达到(134)Cs 和(137)Cs 的 68000 Bq.L(-1),(131)I 超过 100000 Bq.L(-1)。由于释放是在事故背景下发生的,因此很难根据在核电站获得的数据来估计进入海水中的放射性核素总量。这里提出了一种评估方法,基于为监测目的而在海水中进行的测量。根据对海水的测量进行插值,计算了核电站周围 50 公里范围内海水中(137)Cs 的数量。从这些数量的时间演变中推导出该地区海水的环境半衰期。(137)Cs 的半衰期约为 7 天,在此期间保持不变。这些数据允许估计主要海洋输入的数量及其随时间的演变:截至 7 月 18 日,估计总共释放了 27 PBq(12 PBq-41 PBq)的(137)Cs。尽管此后可能会有来自核电站的残留输入、河流径流和沉积沉积物的泄漏,但这是未来研究事故对海洋系统影响时必须考虑的主要源项。福岛的(137)Cs 将在北太平洋地区持续数年可检测到,(137)Cs/(134)Cs 比值将成为未来研究的示踪剂。