Suppr超能文献

探究作为固态电池电解质的亚胺锂的电化学行为。

Probing the electrochemical behaviour of lithium imide as an electrolyte for solid-state batteries.

作者信息

Lowen Jeremy P, Insinna Teresa, Beatriceveena Tharigopala V, Stockham Mark P, Dong Bo, Day Sarah J, Grey Clare P, Kendrick Emma, Slater Peter R, Anderson Paul A, Makepeace Joshua W

机构信息

School of Chemistry, University of Birmingham Edgbaston B15 2TT UK

Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK.

出版信息

EES Batter. 2025 Apr 2. doi: 10.1039/d5eb00058k.

Abstract

All-solid-state batteries utilising a Li-metal anode have long promised to be the next-generation of high-performance energy storage device, with a step-change in energy density, cycling stability and cell safety touted as potential advantages compared to conventional Li-ion battery cells. A key to enabling this technology is the development of solid-state electrolytes with the elusive combination of high ionic conductivity, wide electrochemical stability and the ability to form a conductive and stable interface with Li metal. Presently, oxide and sulfide-based materials, particularly garnet and argyrodite-type structures, have proved most promising for this application. However, these still suffer from a number of challenges, including resistive lithium metal interfaces, poor lithium dendrite suppression (at high current density) and low voltage stability. Here we report the first application of lithium imide, an antifluorite-structured material, as a solid electrolyte in a Li-metal battery. Low-temperature synthesis of lithium imide produces promising Li-ion conductivity, reaching >1 mS cm at 30 °C using a modest post-synthetic mechanochemical treatment, as well as displaying at least 5 V stability Li/Li. electrochemical operation of lithium imide with Li-metal electrodes reveals an apparent 1000-fold increase in its measured conductivity, whilst appearing to remain an electronic insulator. It is postulated that stoichiometry variation at the grain boundary may contribute to this conductivity improvement. Furthermore, the material is shown to possess impressive resistance to hard shorting under high current density conditions (70 mA cm) as well as the ability to operate in Li-metal battery cells. These results not only highlight the promising performance of lithium imide, but also its potential to be the basis for a new family of antifluorite based solid electrolytes.

摘要

长期以来,使用锂金属负极的全固态电池一直有望成为下一代高性能储能设备,与传统锂离子电池相比,其能量密度、循环稳定性和电池安全性有望实现跨越式提升。实现这项技术的关键在于开发具有高离子导电性、宽电化学稳定性以及与锂金属形成导电且稳定界面能力的固态电解质。目前,氧化物和硫化物基材料,特别是石榴石和硫银锗矿型结构,已被证明在该应用中最具前景。然而,这些材料仍面临诸多挑战,包括电阻性锂金属界面、锂枝晶抑制效果不佳(在高电流密度下)以及低电压稳定性。在此,我们报告了锂亚胺(一种反萤石结构材料)作为锂金属电池固态电解质的首次应用。锂亚胺的低温合成产生了令人期待的锂离子导电性,在30°C下通过适度的合成后机械化学处理,锂离子电导率达到>1 mS cm,并且在Li/Li电化学操作中显示出至少5 V的稳定性。锂亚胺与锂金属电极的电化学操作显示其测量电导率明显提高了1000倍,同时似乎仍保持为电子绝缘体。据推测,晶界处的化学计量变化可能有助于这种电导率的提高。此外,该材料在高电流密度条件(70 mA cm)下表现出对硬短路的出色抗性,并且能够在锂金属电池中运行。这些结果不仅突出了锂亚胺的优异性能,还表明其有潜力成为新型反萤石基固态电解质家族的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb9b/12001454/01d14fdb8893/d5eb00058k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验