Suppr超能文献

内皮细胞在高壁切应力下表达独特的转录谱,已知这种高壁切应力会引起动脉扩张性重塑。

Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.

机构信息

Toshiba Stroke Research Center, University at Buffalo, State University of New York, 14214, USA.

出版信息

Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1109-18. doi: 10.1152/ajpcell.00369.2011. Epub 2011 Dec 14.

Abstract

Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. Very high WSS induced a distinct expression profile compared with both no-flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative, and promatrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction: very high WSS upregulated ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motif-1), PLAU (urokinase plasminogen activator), PLAT (tissue plasminogen activator), and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (thrombospondin-1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilateral carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.

摘要

慢性高流量可诱导动脉重塑,这种效应是通过内皮细胞(ECs)对壁切应力(WSS)的反应介导的。为了评估高于生理正常水平的 WSS 如何影响 ECs,我们使用 DNA 微阵列在各种流动条件下对 EC 基因表达进行分析。将培养的牛主动脉 ECs 暴露于无流(0 Pa)、正常 WSS(2 Pa)和非常高 WSS(10 Pa)24 h。与无流和正常 WSS 相比,非常高的 WSS 诱导了一个明显的表达谱。GO 和生物途径分析表明,高 WSS 以促进抗凝血、抗炎、增殖和促进基质重塑表型的方式调节基因表达。使用定量聚合酶链反应验证了一组特征基因:非常高的 WSS 上调了 ADAMTS1(含有血小板反应蛋白基序的解整合素和金属蛋白酶-1)、PLAU(尿激酶纤溶酶原激活物)、PLAT(组织纤溶酶原激活物)和 TIMP3,所有这些都参与细胞外基质的处理,其中 PLAT 和 PLAU 也有助于纤维蛋白溶解。下调的基因包括 CXCL5 和 IL-8 以及细胞黏附糖蛋白 THBS1(血栓素-1)。通过免疫组织化学评估兔基底动脉中经历双侧颈动脉结扎后增加的血流时 ADAMTS1 和 uPA 蛋白的表达。与假手术对照动物相比,当 WSS 升高时,这两种蛋白的表达均显著增加。我们的结果表明,非常高的 WSS 在 ECs 中引发了一个独特的转录谱,有利于在增加的血流下血管稳态的特定细胞功能和途径。此外,我们确定了在升高的流动条件下可能有助于适应性重塑的特定分子靶标。

相似文献

1
Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.
Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1109-18. doi: 10.1152/ajpcell.00369.2011. Epub 2011 Dec 14.
2
Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.
Am J Physiol Cell Physiol. 2013 Oct 15;305(8):C854-66. doi: 10.1152/ajpcell.00315.2012. Epub 2013 Jul 24.
3
High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
Ann Biomed Eng. 2011 Jun;39(6):1620-31. doi: 10.1007/s10439-011-0267-8. Epub 2011 Feb 11.
4
Epigenetic response of endothelial cells to different wall shear stress magnitudes: A report of new mechano-miRNAs.
J Cell Physiol. 2020 Nov;235(11):7827-7839. doi: 10.1002/jcp.29436. Epub 2020 Jan 8.
5
Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model.
Stroke. 2010 Aug;41(8):1774-82. doi: 10.1161/STROKEAHA.110.585992. Epub 2010 Jul 1.
7
Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities.
Front Physiol. 2021 Oct 14;12:727338. doi: 10.3389/fphys.2021.727338. eCollection 2021.
8
Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow.
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H736-42. doi: 10.1152/ajpheart.01156.2007. Epub 2008 Jun 13.
9
An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
Cardiovasc Eng Technol. 2016 Mar;7(1):44-57. doi: 10.1007/s13239-015-0250-x. Epub 2015 Nov 30.
10
HMGB1 Induced Oxidative Stress and Inflammation in Endothelial Cells Exposed to Impinging Flow.
Cerebrovasc Dis. 2024;53(4):437-448. doi: 10.1159/000534632. Epub 2023 Oct 20.

引用本文的文献

1
High wall shear stress-dependent podosome formation in a novel murine model of intracranial aneurysm.
Front Stroke. 2024;3. doi: 10.3389/fstro.2024.1494559. Epub 2024 Nov 25.
2
Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future.
Arterioscler Thromb Vasc Biol. 2025 Jun;45(6):882-900. doi: 10.1161/ATVBAHA.125.322557. Epub 2025 Apr 10.
3
High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.
Arterioscler Thromb Vasc Biol. 2025 Feb;45(2):218-237. doi: 10.1161/ATVBAHA.124.321092. Epub 2024 Dec 26.
5
A tissue-engineered model of the blood-tumor barrier during metastatic breast cancer.
Fluids Barriers CNS. 2023 Nov 3;20(1):80. doi: 10.1186/s12987-023-00482-9.
7
Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond.
Biol Rev Camb Philos Soc. 2023 Oct;98(5):1648-1667. doi: 10.1111/brv.12970. Epub 2023 May 8.
9
Experimental Study of the Propagation Process of Dissection Using an Aortic Silicone Phantom.
J Funct Biomater. 2022 Dec 9;13(4):290. doi: 10.3390/jfb13040290.
10
"Going with the flow" in modeling fibrinolysis.
Front Cardiovasc Med. 2022 Dec 2;9:1054541. doi: 10.3389/fcvm.2022.1054541. eCollection 2022.

本文引用的文献

2
High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
Ann Biomed Eng. 2011 Jun;39(6):1620-31. doi: 10.1007/s10439-011-0267-8. Epub 2011 Feb 11.
3
Progressive aneurysm development following hemodynamic insult.
J Neurosurg. 2011 Apr;114(4):1095-103. doi: 10.3171/2010.9.JNS10368. Epub 2010 Oct 15.
4
Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model.
Stroke. 2010 Aug;41(8):1774-82. doi: 10.1161/STROKEAHA.110.585992. Epub 2010 Jul 1.
5
Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries.
Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H837-46. doi: 10.1152/ajpheart.00002.2010. Epub 2010 Jun 11.
6
Sex differences in intracranial arterial bifurcations.
Gend Med. 2010 Apr;7(2):149-55. doi: 10.1016/j.genm.2010.03.003.
7
Regulation of the protein C anticoagulant and antiinflammatory pathways.
Curr Med Chem. 2010;17(19):2059-69. doi: 10.2174/092986710791233706.
9
In vivo assessment of rapid cerebrovascular morphological adaptation following acute blood flow increase.
J Neurosurg. 2008 Dec;109(6):1141-7. doi: 10.3171/JNS.2008.109.12.1141.
10
In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1556-61. doi: 10.1152/ajpheart.00540.2008. Epub 2008 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验