Suppr超能文献

流体剪切应力调节的血管重塑:过去、现在与未来

Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future.

作者信息

Deng Hanqiang, Eichmann Anne, Schwartz Martin A

机构信息

Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT.

Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT.

出版信息

Arterioscler Thromb Vasc Biol. 2025 Jun;45(6):882-900. doi: 10.1161/ATVBAHA.125.322557. Epub 2025 Apr 10.

Abstract

The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.

摘要

血管系统在整个生命过程中都会进行重塑,以确保随着组织生长、退化或代谢活动改变时能有足够的灌注。血管生成,即新血管的芽生以扩展毛细血管网络,与消退相反,消退过程中内皮细胞死亡或迁移以去除不需要的毛细血管,二者共同控制着毛细血管密度。此外,上游动脉会调节其直径,以优化向下游血管床的血流,这主要由感知血流产生的流体切应力(FSS)的血管内皮细胞控制。毛细血管密度和小动脉张力的变化会导致血管床阻力的改变,进而导致为这些小血管供血的动脉中血流的变化。通过这些血管的FSS的相应降低或增加,随后分别刺激它们的内向或外向重塑。本综述总结了我们对内皮FSS依赖性血管重塑的认识,为潜在的治疗干预提供见解。我们首先提供一个历史概述,然后讨论设定点的概念以及低FSS介导和高FSS介导的内向和外向重塑的机制。接着我们涵盖体内动物模型、分子机制和临床意义。了解生理性内皮FSS介导的血管重塑的潜在机制以及由于突变或慢性炎症和代谢应激导致的机制失效,可能会带来预防或治疗血管疾病的新治疗策略。

相似文献

1
Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future.
Arterioscler Thromb Vasc Biol. 2025 Jun;45(6):882-900. doi: 10.1161/ATVBAHA.125.322557. Epub 2025 Apr 10.
2
Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2105339118.
3
A KLF2-BMPER-Smad1/5 checkpoint regulates high fluid shear stress-mediated artery remodeling.
Nat Cardiovasc Res. 2024 Jul;3(7):785-798. doi: 10.1038/s44161-024-00496-y. Epub 2024 Jul 8.
4
Biomechanics of vascular mechanosensation and remodeling.
Mol Biol Cell. 2016 Jan 1;27(1):7-11. doi: 10.1091/mbc.E14-11-1522.
5
Regulation of coronary blood flow during exercise.
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
7
Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Reversed Flow Direction.
Arterioscler Thromb Vasc Biol. 2015 Nov;35(11):2354-65. doi: 10.1161/ATVBAHA.115.305775. Epub 2015 Sep 3.
9
Flow detection and calcium signalling in vascular endothelial cells.
Cardiovasc Res. 2013 Jul 15;99(2):260-8. doi: 10.1093/cvr/cvt084. Epub 2013 Apr 9.
10
Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4.
Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10):H1655-66. doi: 10.1152/ajpheart.00408.2015. Epub 2015 Sep 25.

引用本文的文献

1
ALK1-BMPRII agonism by clustering bispecific antibodies treats hereditary hemorrhagic telangiectasia.
bioRxiv. 2025 Aug 14:2025.08.13.670104. doi: 10.1101/2025.08.13.670104.
2
3
Endothelial heterogeneity shapes shear stress response: a transcriptomic perspective.
Res Pract Thromb Haemost. 2025 Jun 10;9(4):102927. doi: 10.1016/j.rpth.2025.102927. eCollection 2025 May.
4
Pulsatile flow dynamics determine pulmonary arterial architecture.
bioRxiv. 2025 Jul 2:2025.06.30.662470. doi: 10.1101/2025.06.30.662470.

本文引用的文献

2
High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.
Arterioscler Thromb Vasc Biol. 2025 Feb;45(2):218-237. doi: 10.1161/ATVBAHA.124.321092. Epub 2024 Dec 26.
3
Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis.
Nat Cardiovasc Res. 2024 Sep;3(9):1035-1048. doi: 10.1038/s44161-024-00522-z. Epub 2024 Sep 4.
4
BMPER regulates arterial adaptation to flow.
Nat Cardiovasc Res. 2024 Jul;3(7):777-779. doi: 10.1038/s44161-024-00506-z.
5
A KLF2-BMPER-Smad1/5 checkpoint regulates high fluid shear stress-mediated artery remodeling.
Nat Cardiovasc Res. 2024 Jul;3(7):785-798. doi: 10.1038/s44161-024-00496-y. Epub 2024 Jul 8.
6
Mechanisms of endothelial flow sensing.
Nat Cardiovasc Res. 2023 Jun;2(6):517-529. doi: 10.1038/s44161-023-00276-0. Epub 2023 Jun 12.
7
Sotorasib for Vascular Malformations Associated with G12C Mutation.
N Engl J Med. 2024 Jul 25;391(4):334-342. doi: 10.1056/NEJMoa2309160. Epub 2024 Jul 17.
8
Advances in exercise-induced vascular adaptation: mechanisms, models, and methods.
Front Bioeng Biotechnol. 2024 Feb 22;12:1370234. doi: 10.3389/fbioe.2024.1370234. eCollection 2024.
9
Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes.
N Engl J Med. 2023 Dec 14;389(24):2221-2232. doi: 10.1056/NEJMoa2307563. Epub 2023 Nov 11.
10
Statins improve endothelial function via suppression of epigenetic-driven EndMT.
Nat Cardiovasc Res. 2023 May;2(5):467-485. doi: 10.1038/s44161-023-00267-1. Epub 2023 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验