Suppr超能文献

探索基因组冰山一角:植物系统学的新一代测序技术。

Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

机构信息

Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon 97331, USA.

出版信息

Am J Bot. 2012 Feb;99(2):349-64. doi: 10.3732/ajb.1100335. Epub 2011 Dec 14.

Abstract

PREMISE OF THE STUDY

Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics.

METHODS

Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae).

KEY RESULTS

Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC.

CONCLUSIONS

Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

摘要

研究前提

正如 Sanger 测序在 20 多年前所做的那样,下一代测序(NGS)正准备彻底改变植物系统学。通过将多重方法与 NGS 通量相结合,系统学家可能不再需要在更多分类单元或更多特征之间做出选择。在这里,我们描述了一种用于植物系统学的基因组刮削(浅层测序)方法。

方法

通过模拟,我们评估了核核糖体 DNA(rDNA)和质体组装的单端和配对末端短读序列的最佳测序深度和性能,并解决了分歧对参考指导质体组装的影响。我们还使用模拟从不同测序深度的低拷贝核基因座中识别潜在的系统发育标记。我们通过对 Asclepias(夹竹桃科)索诺兰沙漠群(SDC)的系统发育分析证明了基因组刮削的实用性。

主要结果

配对末端读数的性能优于单末端读数。高质量 rDNA 和质体组装的最小测序深度分别为 40×和 30×。与参考序列的差异显着影响质体组装,但对于大多数种子植物来说,相对相似的参考序列是可用的。为了描述基因组内多态性,需要对 rDNA 进行更深的测序。即使在测序深度较低的情况下,核基因组的低拷贝部分也很容易被调查。来自三个细胞器的近 160000 bp 序列提供了 SDC 中系统发育不一致的证据。

结论

采用 NGS 将促进植物系统学的发展,因为现在可以有效地获得整个质体和 rDNA 基因座、部分线粒体基因组和低拷贝核标记,用于分子系统发育研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验