Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
PLoS Genet. 2011 Dec;7(12):e1002405. doi: 10.1371/journal.pgen.1002405. Epub 2011 Dec 8.
Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR-deficient Csa(-/-) and Csb(-/-) CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/-) and Xpc(-/-) XP mice, but also occurred in Xpd(XPCS) mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-), Csb(-/-)) or highly sporadic (Xpa(-/-), Xpc(-/-)) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/-) and Csb(-/-) TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR-deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival.
神经元变性是许多 DNA 修复综合征的标志。然而,DNA 损伤如何导致神经元变性,以及不同修复系统的缺陷是否对大脑产生不同的影响,在很大程度上尚不清楚。在这里,我们对核苷酸切除修复(NER)和转录偶联修复(TCR)两种部分重叠的 DNA 修复系统缺陷的小鼠模型中的神经退行性变化进行了系统的详细分析,这两种修复系统分别去除螺旋扭曲和转录阻断的损伤,与紫外线敏感综合征着色性干皮病(XP)和 Cockayne 综合征(CS)相关。TCR 缺陷型 Csa(-/-)和 Csb(-/-)CS 小鼠表现为神经胶质细胞在神经系统中髓鞘轴突周围的激活。这种白质小胶质细胞激活在 NER 缺陷型 Xpa(-/-)和 Xpc(-/-)XP 小鼠中未观察到,但也发生在携带 Xpd 基因点突变(G602D)的 Xpd(XPCS)小鼠中,该突变与 XPCS 综合障碍有关,并导致部分 NER 和 TCR 缺陷。TCR 缺陷型小鼠的白质异常与 CS 患者的局灶性脱髓鞘病变相吻合。除了散发性(Csa(-/-),Csb(-/-))或高度散发性(Xpa(-/-),Xpc(-/-))神经元和星形胶质细胞中 p53 的激活外,TCR 和 NER 缺陷型小鼠均未显示神经元变性的证据。为了研究这两种修复系统之间是否存在重叠,我们生成了 TCR 缺陷型小鼠,其在出生后神经元中选择性失活 NER。这些小鼠表现出明显的年龄相关累积神经元丢失,表明 TCR 和 NER 途径在神经元中的 DNA 损伤底物重叠和协同作用,并揭示了自发 DNA 损伤的发生,这可能触发神经元变性。我们提出,虽然 Csa(-/-)和 Csb(-/-)TCR 缺陷型小鼠是研究 CS 中髓鞘异常机制的有力动物模型,但 TCR 缺陷型小鼠中 NER 的神经元特异性失活代表了 NER 在神经元维持和存活中的作用的有价值模型。