Shao Baohai
Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
Biochim Biophys Acta. 2012 Mar;1821(3):490-501. doi: 10.1016/j.bbalip.2011.11.011. Epub 2011 Dec 10.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
导致高密度脂蛋白(HDL)失去心脏保护特性的机制目前还知之甚少。一种潜在途径涉及髓过氧化物酶(MPO,一种由人动脉壁巨噬细胞分泌的血红素酶)对HDL蛋白质的氧化损伤。质谱分析表明,在已确诊心血管疾病患者分离出的HDL中,3-氯酪氨酸和3-硝基酪氨酸(MPO的两种特征性产物)的水平有所升高。当HDL的主要蛋白质载脂蛋白A-I(apoA-I)被MPO氧化时,其通过膜相关ATP结合盒转运体A1(ABCA1)途径促进细胞胆固醇外流的能力就会减弱。生化研究表明,apoA-I中特定酪氨酸和蛋氨酸残基的氧化导致了ABCA1活性的丧失。另一种产生功能失调HDL的潜在机制涉及活性羰基对apoA-I的共价修饰,活性羰基与动脉粥样硬化和糖尿病血管疾病有关。事实上,丙二醛(MDA)或丙烯醛对apoA-I的修饰也显著损害了脂蛋白通过ABCA1途径促进细胞胆固醇外流的能力。串联质谱分析表明,这些活性羰基靶向apoA-I C末端的特定赖氨酸残基。重要的是,免疫化学分析表明,在从人类动脉粥样硬化病变中分离出的HDL中,MDA-蛋白质加合物的水平升高。此外,在这些病变中,apoA-I与丙烯醛加合物共定位。因此,脂质过氧化产物可能在体内特异性修饰HDL。我们的观察结果支持以下假设:MPO和活性羰基可能在人体内产生功能失调的HDL。本文是名为《高密度脂蛋白形成与代谢进展:向约翰·F·奥勒姆致敬(1945 - 2010)》特刊的一部分。